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Not all is justified in the name of old,

nor is the new poem never extolled.

Wise ones examine, then select the best from both;

but the unwise merely parrot other peoples’ quotes

Kalidasa
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SUMMARY

Many useful AI tasks like machine translation, captioning or program syn-

thesis to name a few can be abstracted as structured prediction problems. For

these problems, the search space is well-defined but extremely large — all En-

glish language sentences for captioning or translation and similarly, all programs

that can be generated from a context-free grammar in the case of program syn-

thesis. Therefore, inferring the correct output (a sentence or a program) given the

input (an image or user-defined specifications) is an intractable search problem.

To overcome this, heuristics — hand designed or learnt from data — are often

employed. In my work, I propose modified search procedures to output multiple

diverse sequences and then, for the task of outputting programs, I propose a novel

search procedure that accelerates existing techniques via heuristics learnt from

deep networks. Going further, I propose to study the role of memory and search

i.e. process each new query with the memory of previous queries — specifically

in the context of solving mathematical problems.

In the context of sequence prediction tasks like image captioning or transla-

tion, I introduce Diverse Beam Search (DBS), an approximate inference technique

to decode multiple relevant and diverse outputs. With the objective of produc-

ing multiple sentences that are different from each other, DBS modifies the com-

monly used Beam Search procedure by greedily imposing diversity constraints. In

follow-up work, we directly formulate the task of modeling a set of sequences and

propose a trainable search procedure dubbed diff-BS. While both algorithms are

xvii
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task-agnostic, image-captioning is used as the test-bed to demonstrate their effec-

tiveness. In the context of program-synthesis, I propose Neural Guided Deductive

Search (NGDS), that accelerates deductive search via learnt heuristics. We find

that our approach results in a significant speedup without compromising on the

quality of the solutions found. Further, I will discuss the application of this tech-

nique in the context of programming by examples and synthesis of hard problems

for a given solver.

Finally, I study the interplay between memory and search, specifically in the

context of mathematical problem solving. Analogical reasoning is a strategy com-

monly adopted by humans while solving problems i.e. new and unseen problems

are solved by drawing parallels to previously seen problems. Inspired by such

an approach, I propose to learn suitable representations for “problems” that al-

lows the reuse of solutions from previously seen problems as a building block to

construct the solution for the problem at hand.

xviii
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CHAPTER 1

INTRODUCTION

Search Problems. Many interesting problems in engineering are solved by refor-

mulating them as search problems. Formally, a general search problem is speci-

fied by:

• Search Space. Set of objects among which we search for a solution, can

potentially be exponential.

For instance, all possible paths when trying to find a path between two nodes

s and t in a graph or all possible assignments in {0, 1, . . . , 9} to an empty

square when solving a Sudoku puzzle.

• Goal Condition. A set of rules that help us verify if the solution has the

required properties.

For example, we want the path to begin at node s and end at node t. Simi-

larly, a solution for a Sudoku puzzle has no repeated digit in any single row,

column or sub-square.

For example, A useful reformulation of the search problem involves representing

it as a path finding problem in a graph. In such a reformulation a search problem

is specified by:

• Initial State. A reasonable default state that is a part of the “search space”.

1
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While a trivial example is that of finding a path in the graph itself from node

s to t. A less obvious example is say, the current configuration of a Sudoku

puzzle.

• Goal State. This is the same as before and is either a specified instance

(like node t) or is implicitly defined by a set of conditions – like in the case

of a Sudoku puzzle.

• Operators. These are a set of potentially pre-defined set of “actions” that

allow us to transform one state to the other. For example, one can construct

a path s→ only if the graph has an edge between the two nodes. Likewise,

a “valid” assignment of a number to an empty square has to ensure that the

resulting Sudoku board has no repetitions.

In this modified representation of a search problem, the initial state and the set

of operators together define the search space. In fact, this representation not only

defines it but also provides us with a handle to move between states – as opposed to

say, brute force enumeration and verifying which is intractable in many situations.

1.1 Problem Solving as Search.

Having introduced the graph representation of search problems, we now discuss a

well-known classification of problems based on how they translate to such a rep-

resentation. The classification is as follows: Well-structured problems are clearly

defined and often, it is possible to run exhaustive search procedures to find the

2
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Table 1.1: Classification and Description of Problem classes.
Well Structured Moderately Structured Ill Structured

Initial State well defined well defined well defined
Goal State well defined well defined undefined
Operators well defined large but well defined undefined

Constraints well defined usually well defined not well defined
Example Starting a car fixing a car designing a car

solution. On the other end of the spectrum, ill-structured problems have an unde-

fined goal (and poorly defined constraints when the goal is specified via a set of

conditions) and further, the set of operators is also not defined! For consider the

task of “Compose a musical piece that is aesthetically pleasing” – the start state

is clear in that there isn’t any music written. However, the goal state requires aes-

thetically pleasing music which is subjective and hence, poorly defined. Further,

it is not clear if one needs to compose an instrumental, a fast or slow paced piece,

what genre to adhere to, etc. – making the space of operators both undefined and

large.

Moderately structured problems on the other hand come with a set of clearly

defined operators and are similar to well-structured problems. However, unlike

well-structured problems, it is often not possible to perform an exhaustive search

procedure to trivially identify the solution. Many useful problems in the real-

world can be formulated as moderately-structured problems. We now state some

examples especially of interest to this thesis:

• Image Captioning. Image captioning is the task of producing an English

language sentence that accurately describes the contents of the given image.

3
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Assume that we operate under the additional constraint of producing at most

T length sentences and a finite vocabulary V . Now, the search space is the

set of all possible sentences of length at most T . Further, the set of operators

available are the words w ∈ V allowing us to move form one state to the

other – say, (w1, w2) → (w1, w2, w3). The task is said to be “solved” when

we have produced a sentence (w1, w2, . . . wT ) that accurately described the

image (as measured by some oracle).

Naturally, other language generation like machine translation, etc. are cap-

tured by a similar reformulation to a search problem.

• Program Synthesis. Program Synthesis [1], is the task of outputting a pro-

gram P ∈ L where L is a pre-specified language (say, a context free gram-

mar) such that the program satisfies some specification σ. For example,

consider the task of Programming by Examples (PBE) [2] – as a simplified

instance, given a language that allows construction of strings via concatena-

tion and substring operations, one needs to output a program that transforms

a given string into another string (“xyz”→xyz@gatech.edu). While the

search space is all possible programs that belong to the language, the defi-

nition of the grammar provides us with a set of “operators” at each step. At

each step, one needs to decide which rule is used to expand a non-terminal

and this information is got by the definition of the grammar.

4
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1.2 Learning Heuristics for Search

As discussed in the previous section, many interesting problems fall under the cat-

egory of moderately-structured problems that can be formulated as search prob-

lems specified by an initial state, goal state and a set of operators. The set of

operators while providing a handle to transform one state to the other, is still huge

and performing an exhaustive search is intractable. Therefore, it is necessary to

develop heuristics that “guide” the search process. Despite having little to no

theoretical guarantees, heuristics often work well in practice. These can be ob-

tained either by hand-designing or learning from data. Clearly, hand-designing

good heuristics is both expensive and cumbersome, requiring a large amount of

human hours for extensive trial and error. Learnt heuristics typically consist of

two components:

1. Context Encoder. This encodes the “history” of the search process till

the current time or in other words, the search trace. In the case of image

captioning the context is the initial context i.e. the image and the partial

sentence. Similarly, in the case of program synthesis, it is the set of initial

specifications and the partial program produced thus far.

Auto-regressive models like Recurrent Neural Networks and LSTMs [3]

are often employed for this purpose. These models produce a summary of

the search process ht at time t as a function of the summary from the pre-

vious time step ht and any other inputs to the system at time t, xt. [4] and

5
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[5] are illustrative examples that introduced such models in the context of

captioning and program synthesis. More recently, more complex models

like Transformers [6], Graph Neural Networks [7], etc. have been used to

encode the context.

2. Rule Predictor. Once a reasonable encoding of the context is obtained, a

classifier, which we call the rule predictor, is used to pick the next “action”

from the set of operators conditioned on the context. In other words, the rule

predictor models the probability of the next token to explore conditioned on

the search process so far.

For instance, a linear classifier takes the context as input to produce dis-

tribution over all the words in the vocabulary – i.e. Pr(wt|ht−1) where

ht = [wt−1, wt−2, . . . w1,xt] and wt ∈ V – in the case of sequence mod-

eling tasks like captioning. Similarly, in the context of program synthesis,

[8] use a linear regression model that outputs an unnormalized score for

each valid rule that can be used to expand the current search tree.

It is common to train both the context encoder and the rule predictor jointly in

an end-to-end manner. In practice, the usage of heuristics leads to significant

speedups and often with little to no loss in performance. Of course, it is often not

possible to characterize the loss in performance theoretically and a validation set

has to be relied on to obtain a sense of “goodness” for the learnt heuristic.
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1.3 Beyond Heuristics for Search.

Formulating general problem solving as a search problem allows for a rich set of

techniques to be adapted from this literature. Further, it allows provides a clean

framework to incorporate concepts from learning – in the form of heuristics – en-

abling faster search. While heuristics, hand-crafted or learned from data, lead to

improvements in speed, these methods ignore a significant aspect of intelligence

– memory. By treating each problem in a stand-alone fashion, the “experience”

collected from previous queries is completely discarded. Despite the problems be-

ing similar, the search – exhaustive or guided via heuristics – starts afresh, which

is wasteful. For example, two images with similar contents can probably be de-

scribed with the same caption – in which case there is no need to step the search

model again!

However, the bottleneck preventing such a scheme is often a suitable represen-

tation space that explains both the problem definition and their solution. Note

that both need to be encoded effectively as the solution can differ significantly de-

spite the problems appearing similar. For instance, consider solving the following

equation x2 = 4 for the variable x. Given a numerical algorithm to find perfect

squares, this problem can be solved efficiently. On the other hand the same solu-

tion will not work for x2 = 5, clearly, the number 5 is not a perfect square. While

both the problems have identical structure i.e. x2 = k, k ∈ Z, their solutions are

obtained via different methods.

7
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Going ahead, I wish to explore a search procedure for machine reasoning prob-

lems that utilizes information from previous queries. In the rest of the section, I

discuss the motivations and prioir work for such an approach to problem solving.

Human Problem Solving. In fact, well-established cognitive models of human

problem solving [9], propose the following steps:

1. Problem Categorization

2. Construction of a Mental Representation of the Problem

3. Search for the appropriate problem-solving operators

4. Retrieval and Application of those operators

5. Evaluation of the progress

6. Repeat 1-4 till progress is satisfactory

7. Storage of the solution

Why is the final step – storage of the solution – necessary? Interestingly, research

finds that experts find it much easier to acquire new knowledge than novices in

the domain of expertise. For example, [10] found that expert baseball players

remembered the details of a game much better than novices after listening to a

broadcast of a novel game. Similarly, expert pilots recollected more than novice

pilots [11] after listening to a new air traffic control message. Why is it that

expertise and efficient storage and recall of information are correlated? Further, in

8
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the case of novices, [12] observed that problems where there was an impasse were

more memorable – hinting that certain experiences are more likely to be useful

when stored. This indicates that the storage step is more sophisticated involving

reasoning about the potential utility of a problem. In this specific instance, it

is easy to see that a problem that is not solvable is more “useful” as a potential

reduction to this problem can save considerable time.

1.4 Organization

The rest of the thesis proposal is organized as follows – Chapter 2 first discusses

Diverse Beam Search [13], a search procedure to produce diverse sequence given a

sequence model. Next, I discuss follow-up work [14] that learns to model intra-set

constraints like diversity – upgrading the previous search procedure from hand-

crafted diversity functions to ones that are directly learnt from data. In chapter 3, I

discuss Neural Guided Deductive Search [8], a best of both worlds approach, that

utilizes heuristics learnt via Deep Neural Networks to speed up a program syn-

thesis engine. Finally, I discussed propose extensions of my works – specifically,

improving search techniques using the memory of previous queries. I will discuss

this extension in the context of programming puzzles introduced by my previous

work [15] (Work under Review).

9
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CHAPTER 2

DIVERSE DECODING FROM NEURAL SEQUENCE MODELS

A picture is often said to be worth a thousand words, owing this high valuation

to its capability to simultaneously capture multiple objects and their interactions

precisely. Communicating this rich information in natural language requires pro-

viding many details about the scene at varying levels of granularity, resulting in a

great deal of diversity in visually-grounded language. Recently, automated ap-

proaches for generating visually-grounded language based on neural sequence

models have been studied [4, 16, 17, 18]; however, in practice, utterances gen-

erated from these models often tend to be generic and fail to recover the diversity

observed in human annotations.

Language Modeling. Recurrent Neural Networks (RNNs), Long Short-Term

Memory networks (LSTMs), or more generally, neural sequence models have

been extensively used for modeling time-series in a data-driven manner – includ-

ing, standard sequence-to-sequence problems such as speech recognition [19],

machine translation [20], and conversation modeling [21]. More recently, neu-

ral sequence models have been applied to visually-grounded language generation

tasks like image and video captioning [4, 16], question generation [17], and dialog

[18]. In these tasks, neural sequence models are typically trained to estimate the

likelihood of a sequence of output tokens y = (y1, . . . , yT ) from a finite vocabu-

lary V , conditioned on some input x. For example, in image captioning, the input

10
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A table that has a bunch of bowls on it and some bottles
A table that has a bunch of bowls on it 
A table that has a bunch of food on it
A table that has a bunch of bottles on it
A table that has a bunch of plates on it
A table that has a bunch of flowers on it

Beam Search

A table with a vase of flowers on it
A table with a vase of flowers on it and a window

A table that has some food on it
A table that has some pots and pans on it
An empty kitchen table with a vase of flowers
An empty kitchen table with a bowl of fruit on it

Diverse Beam Search

A view of a kitchen from behind a dining table.    A table with a plant and some fruit on it.             Some tea kettles are hanging above a table.
Some fruit in a bowl next to a plant on a table in a kitchen.            An outdoor kitchen and eating area with a brick wall in the background.

Human 
Captions

Figure 2.1: Comparing image captioning outputs decoded by BS (top) and our
method, Diverse Beam Search (middle) – we notice that BS captions are near-
duplicates with similar shared paths in the search tree and minor variations in
the end. In contrast, DBS captions are significantly diverse and similar to the
variability in human-generated ground truth captions (bottom).

x is a continuous representation of a source image as encoded by a Convolutional

Neural Network (CNN) and the output y is a natural language description of the

scene depicted in the source image.

Inference in RNNs. At test time, Maximum a Posteriori (MAP) inference

must be performed to decode the most likely sequence given an input image. How-

ever, the space of all T length sequences consists of |V|T possibilities; therefore,

exact inference is intractable even for modestly sized tasks. Instead, approximate

inference algorithms like Beam Search (BS) are commonly used to decode likely

sequences.

BS is a heuristic graph-search algorithm that maintains the B most-likely par-

tial sequences expanded in a greedy left-to-right fashion (Fig. 2.1 (middle) shows

a sample search tree). Despite its widespread usage, it is generally known to

produce generic or “safe” outputs. For example, generic captions like “Animals

11
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standing in the field” or responses such as “I can’t tell” in dialog are applicable to

a wide range of images and hence, are largely uninformative. Equally problem-

atic, the top-B outputs from BS lack diversity and typically express an identical

sentiment through minor rewordings (often only in the last few words). While this

behavior is disadvantageous for many reasons (including being computationally

wasteful), we argue that the most adverse effects occur in cases where Pr(y|x)

truly is multimodal; as is often the case in language generation tasks where there

is generally not a single ‘correct’ utterance.

Fig. 2.1 highlights these deficiencies in an example image captioning task.

The human captions (top) show a range of phrasings and focus on different objects

(table, plant, fruit, kettles), relationships (on, in, above) and granularity (kitchen

vs. objects in the kitchen). The BS based captions (middle-top) in contrast are

generic captions that complete a single root sentence with various objects typically

found on a table (bowls, food, bottles, plates, flowers), though many of them are

not present on this table. It is clear that producing B nearly identical, generic

captions is woefully inadequate to reflect the space of relevant descriptions.

Overview and Contributions. To address this shortcoming, we propose Di-

verse Beam Search (DBS) – a general framework for decoding a set of diverse se-

quences that can be used as an alternative to BS. At a high level, DBS decodes di-

verse lists by dividing candidate solutions into groups and enforcing diversity be-

tween groups. DBS decoded captions in Fig. 2.1 (bottom) show higher variability

in phrasing and focus more on objects actually in the scene. Drawing from work

in the probabilistic graphical models literature on Diverse M-Best (DivMBest)

12
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MAP inference [22, 23, 24], we optimize an objective comprised of two terms –

the sequence likelihood under the neural sequence model and a dissimilarity term

that encourages sequence across groups to differ. This diversity-augmented model

score is optimized in a doubly greedy manner – greedily maximizing both along

time (like BS) and across groups (like DivMBest).

We report results on two visually grounded tasks – image captioning and vi-

sual question generation and machine translation. Our experiments show that DBS

consistently outperforms baseline methods in terms of both diversity-related and

task-specific quality metrics. Moreover, we find that both these improvements

and human preference for DBS decoded outputs increase on tasks grounded in

more complex images (i.e.those requiring a greater deal of diversity). We also

show improvements over BS on non-visual machine translation tasks. Overall,

our algorithm decodes high-quality, diverse sequence sets while being simple to

implement and comparable to BS in terms of computation and memory require-

ments. To aid transparency and reproducibility, our code for DBS is available at

https://github.com/ashwinkalyan/dbs. A demo of our method is

available at http://dbs.cloudcv.org/.

2.0.1 Related Work

Diverse M-Best Lists. The task of generating diverse structured outputs from

probabilistic models has been studied extensively [25, 22, 24, 23]. [22] formalized

this task for Markov Random Fields as the DivMBest problem and presented a

greedy approach which solves for outputs iteratively, conditioning on previous
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solutions to induce diversity. [24] show how these solutions can be found jointly

for certain kinds of energy functions; however, these techniques are not directly

applicable to decoding from RNNs.

Most related to our proposed approach is the work of [26], who apply Di-

vMBest to machine translation using beam search as a black-box inference algo-

rithm. Specifically, in this approach, DivMBest knows nothing about the inner-

workings of BS and simply makesM sequential calls to BS to generateM diverse

solutions. This approach is rather wasteful because BS is run from scratch every

time and although each call to BS produces B solutions, only one solution is re-

tained by DivMBest. In contrast, the approach developed in this paper (DBS)

avoids these shortcomings by integrating diversity within BS such that no beams

are wasted. By running multiple beam searches in parallel and at staggered time

offsets, we obtain large time savings, making our method comparable to a single

run of classical BS and M times faster than [26]. One potential disadvantage of

our method with respect to [26] is that sentence-level diversity metrics cannot be

incorporated in DBS as diversity is encouraged amongst groups before waiting

for them to completely decode a sentence. However, as observed empirically by

us and [27], initial words tend to disproportionately impact the diversity of the re-

sulting sequences – suggesting that later words may not be important for inducing

diversity.

Diverse Decoding for RNNs. Efforts have been made by [27] and [28] to

produce diverse decodings from recurrent models for conversation modeling and

machine translation by introducing novel heuristics within the Beam Search (BS)

14
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algorithm.

[28] proposes a BS diversification heuristic that discourages beams from shar-

ing common roots, implicitly resulting in diverse lists. Introducing diversity through

a formal objective (as in DBS) rather than via a procedural heuristic provides the

flexibility to incorporate different notions of diversity and control the exploration-

exploitation trade-off. Furthermore, we find that DBS significantly outperforms

this approach in our experiments on multiple datasets. [27] introduce a novel

decoding objective that maximizes mutual information between inputs and pre-

dictions to penalize generic sequences. The goal is to penalize utterances that

occur frequently (i.e.generic decodings) rather than penalizing similarity between

generated sequences – which in principle is complementary to both DBS and [28].

Furthermore, evaluating the ‘genericness’ of a sequence requires training a new

input-independent language model for the target language while DBS just requires

a measure of diversity between sequences. Combining these complementary tech-

niques is left as interesting future work.

Sequence Optimization. In an orthogonal line of work, [29] directly learn to

search in the exponential output space to fix the shortcomings of using seq2seq

models. They integrate both the seq2seq architecture and the search problem of

finding the top-sequence via optimizing for both the negative log-likelihood and

search-based losses to obtain significant improvements over the standard training

and inference pipeline. In contrast, our approach is an inference-only technique

that does not require any re-training that works in a model-agnostic fashion.
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2.0.2 Preliminaries

We begin with a refresher on Beam Search for inference in RNNs and DivMBest

before detailing our approach. For notational convenience, we denote the set of

natural numbers from 1 to n with [n] and use v[n] = [v1, . . . , vn] to index the first

n elements of a vector v ∈ Rm.

RNNs are neural sequence models trained to estimate the likelihood of se-

quences of tokens from a finite dictionary V given an input x. The RNN updates

its internal state and estimates the conditional probability distribution over the

next output given the input and all previous output tokens, log Pr(yt|y[t−1],x).

We write the log probability of a sequence y ∈ VT of length T as ΘT (y;x) =∑
t∈[T ] log Pr(yt|y[t−1],x). The decoding problem is then the task of finding a

sequence y that maximizes ΘT (y;x).

As each output is conditioned on all the previous outputs, decoding the opti-

mal length-T sequence in this setting can be cast as MAP inference on a T -order

Markov chain with nodes corresponding to output tokens at each time step. Not

only does the size of the largest factor in such a graph grow as |V|T , but comput-

ing these factors also requires repetitively evaluating the sequence model. Thus,

approximate inference algorithms are employed, with the most prevalent method

being Beam Search (BS).

Beam Search is a heuristic search algorithm which stores the top-B highest

scoring partial solutions at each time step; where B is known as the beam width.

At time t, BS considers all possible single token extensions of existing beams and
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retains the B highest scoring extensions.

Let us denote the set of B solutions held by BS at the end of time t−1 as

Y[t−1] = {y1,[t−1], ...,yB,[t−1]}. At each time step, BS considers all possible single

token extensions of these beams given by the set Yt = {y | y[t−1] ∈ Y[t−1] ∧ yt ∈

V} and retains the B highest scoring extensions. More formally, at each step the

beams are updated as

Y[t] = argmax
y1,...,yB∈Yt︸ ︷︷ ︸

pick top-B

∑
b∈[B]

Θt(yb,[t];x) (2.1)

s.t. yi 6= yj︸ ︷︷ ︸
non-identical beams

∀ i 6= j and i, j ∈ [B].

The above objective can be trivially maximized by sorting all B×|V| members of

Yt by their log probabilities and selecting the top B. This process is repeated until

time T and the complete beams are sorted by log probabilities.

While this method allows for multiple sequences to be explored in parallel,

most completions tend to stem from a single highly valued beam [28]– resulting in

outputs that are often only minor perturbations of a single sequence. To make the

decoded lists reflect the variation present in human-generated language, we show

how the beam search objective can be augmented to include a diversity constraint.

DivMBest. [22] formalize the task of generating M diverse but likely solu-

tions as the DivMBest problem and develop a greedy incremental approach which
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a flock of birds flying in

birds flying over the water

birds flying over an ocean

several birds are

several birds fly

Modify scores to include diversity:
log Pr(‘the′) + λ

∑
∆(‘several birds are the’)...

log Pr(‘over′) + λ
∑

∆(‘several birds fly over’)

?
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a flock of birds flying over the ocean

a flock of birds flying over a beach

birds flying over the water in the sun

birds flying the water near a mountain

several birds are flying over a body of water

several birds flying over a body of water

time t

Figure 2.2: Diverse beam search operates left-to-right through time and top to
bottom through groups. Diversity between groups is combined with joint log
probabilities, allowing diverse continuations to be found efficiently.

solves for one solution at a time conditioned on the previous ones.

Let S(y;x) measure the quality of a solution y ∈ Y and ∆(·, ·) measure

dissimilarity between elements of Y . In this greedy approach, solutions are found

sequentially through a dissimilarity-constrained maximization with respect to pre-

vious solutions,

ym = argmax
y∈Y

S(y;x) s.t. ∆(y,yi) ≥ ki ∀i < m (2.2)

which enforces that new solutions must be sufficiently far from existing ones by

factors k={ki|i∈[m−1]}.

In general, this problem is NP-hard and Batra et al. instead formulate the La-

grangian relaxation of this objective,

g(λ) = max
y∈Y

S(y;x) +
m−1∑
i=1

λi(∆(y,yi)− ki), (2.3)

where λ = {λi|i ∈ [m−1]} is the set of Lagrange multipliers which scale the cost
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of violating each constraint. In practice, setting distance limits k is unintuitive;

however, the authors note that tuning λ directly is analogous to maximizing g(·)

with respect to λ for some unknown set of limits and represents a more intuitive

linear trade-off between quality and dissimilarity of solutions.

With fixed values of λ and prior solutions y1, . . . ,ym−1, the inner maxi-

mization over Y inside g(·) is a function only of y. Given an algorithm capa-

ble of maximizing the original S(y;x), the next diverse solution can be found

by applying the same approach on the diversity-augmented criteria S∆(y;x) =

S(y;x) +
∑m1

i=1 λi∆(y,yi).

[26] apply DivMBest to machine translation by using beam search to maxi-

mize this objective, generating M diverse solutions by performing M complete

beam searches (with B beams), keeping the highest ranked solution from each,

and discarding the remaining B−1 sequences each time. The root cause of this

inefficiency is the treatment of BS as a black-box optimizer and the implemen-

tation of DivMBest as a naı̈ve outer-for-loop around it. In the next section, we

present Diverse Beam Search, which directly incorporates diversity within beam

search itself to improve diversity without incurring this expense.

2.1 Diverse Beam Search

In this section, we present Diverse Beam Search, an algorithm that tightly in-

tegrates diversity within the BS search process to efficiently produce diverse se-

quences.
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Overview and Intuitions. To induce diversity in the selection of beam com-

pletions during beam search, we consider augmenting the objective in Equation

2.1 with a DivMBest style dissimilarity term, λ∆(·). This formulation would en-

courage all beams to differ from one another, with each seeking out a different

mode of the output distribution. However, BS is greedy through time and a single

beam may be insufficient to find highly-likely sequences from each mode, so we

further propose dividing the set of beams into groups and encouraging diversity

only between groups and not within. By dividing our beam budget in this way, we

can vary the number of groups to balance between exploration of the space (more

groups with fewer beams) and exploitation of local maximum (fewer groups with

more beams).

Figure 2.2 displays a snapshot of the proposed method on an image caption-

ing task with G=3 groups comprised of B′=2 beams each. Each group can be

viewed as a smaller, independent beam search operating under a diversity aug-

mented objective based on previous groups’ search paths. As each group must

wait for the prior groups to be processed at each time step, groups are extended

forward in time along a staggered beam-front. In the graphic, the third group is

being stepped forward at time step t = 4 and the previous groups have already

been extended for this time step. In this example, we use hamming distance to

measure diversity which rewards using different words from those used by previ-

ous groups at the same time step – ‘birds’, ‘the’, and ‘an’ in the example. After

the diversity-augmented log-probabilities are computed like in DivMBest, the top

B′ extensions for the third group can be found by a standard beam search step.
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Thus, our approach is doubly greedy – both along time like BS and across groups

like DivMBest. Specifically, the algorithm proceeds in a ‘column-major’ fashion,

greedily optimizing all the groups at each time step. We now detail our approach

which we refer to as Diverse Beam Search (DBS).

DBS Formulation. More formally, consider a partition of the beams, Y[t], into

G groups Y g
[t], g∈[G] each containingB′=B/G beams (a non-uniform beam distri-

bution is possible in practice). At each time step t, we greedily update each group

g by selecting extensions of currently held partial solutions Y g
[t]={y

g
1,[t], . . . ,y

g
B′,[t]}

that maximize a linear combination of sequence likelihood and diversity with re-

spect to previous groups, similar to DivMBest.

We begin by defining a diversity function ∆(y[t], Y
g

[t]) which measures the dis-

similarity between a sequence y[t] and group Y g
[t]. While ∆(·, ·) can take many

forms, for simplicity we define one broad class that decomposes across beams

within a group. We write the general form as

∆
(
y[t], Y

g
[t]

)
=

sum over all previous group beams︷ ︸︸ ︷
B′∑
b=1

δ
(
y[t],y

g
b,[t]

)
︸ ︷︷ ︸

dissimilarity

(2.4)

where δ(·, ·) is a measure of sequence dissimilarity – e.g. a negative cost for each

co-occurring n-gram in two sentences or distance between distributed sentence

representations.

In analogy to DivMBest approaches, we optimize each group while holding
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previously extended groups fixed, incorporating the diversity term ∆(·, ·) into the

BS objective presented in (2.1). For time step t, we can write this diversity-

augmented optimization for updating group g as

Y g
t = argmax

yg1 ,...,y
g

B′︸ ︷︷ ︸
select top-B

∑
b∈[B′]

Θt

(
ygb,[t]

)
︸ ︷︷ ︸

score of extensions

+ λ

g−1∑
h=1

∆
(
ygb,[t], Y

h
[t]

)
︸ ︷︷ ︸

diversity w.r.t. previous groups

(2.5)

s.t. λ ≥ 0, ygi,[t] 6= ygj,[t]∀i 6= j︸ ︷︷ ︸
non-identical extensions

This modified objective is a trade-off between the likelihood of the completions

and their diversity with respect to previously extended groups. As the previous

groups are held fixed, Eq. 2.5 is only a function of the possible extensions. As

such, the log-probabilities of the completions can be augmented with the diversity

term – reducing this problem to a standard BS step with can be solved by sorting

the extension scores. We repeat this for each group at each time step.

Our approach is formalized in Alg. 1 and consists of two main steps performed

for each group at each time step – [1)]

augmenting the log probabilities of all possible extensions with the diversity term

computed from previously advanced groups (Algorithm 1, Line 2) and,

running one step of a smaller BS with B′ beams using the augmented log proba-

bilities to select extensions for the current group (Algorithm 1, Line 3). After all
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Algorithm 1 Diverse Beam Search
Diverse Beam Search with G groups using B beams
for t = 1, . . . T do

// perform one step of beam search

1 Y 1
[t] ← argmax(y1

1,[t]
,...,y1

B′,[t])

∑
b∈[B′] Θt(y

1
b,[t])

s.t. y1
i,[t] 6= y1

j,[t] ∀i 6= j

for g = 2, . . . G do
// augment log probabilities

2 Θt(y
g
b,[t])← Θt(y

g
b,[t]) + λ

∑g−1
h=1 ∆(ygb,[t], Y

h
[t])

for b ∈ [B′],ygb,[t] ∈ Y
g
t and λ > 0

// perform one step of beam search

3 Y g
[t] ← argmax(yg

1,[t]
,...,yg

B′,[t])

∑
b∈[B′] Θt(y

g
b,[t])

s.t. ygi,[t] 6= ygj,[t] ∀i 6= j

Return set of B solutions, Y[T ] =
⋃G
g=1 Y

g
[T ]

sequences have been extended to a preset max length or otherwise terminated, all

solutions from each group are combined and sorted by log probability.

There are a number of advantages worth noting about this approach. By en-

couraging diversity between beams at each step (rather than just between highest

ranked solutions like in [26]), our approach rewards each group for spending its

beam budget to explore different parts of the output space rather than repeatedly

chasing sub-optimal beams from prior groups. Furthermore, the time-staggered

group structure enables each group beam search to be performed in parallel with

a time offset. This parallel algorithm completes in T +G time steps compared to

T ∗ G running time for a black-box approach of Gimpel et al. [26]. Finally, we

note that as the first group is not conditioned on other groups, DBS is guaranteed

to perform at least as well as a beam search of size B′.
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2.1.1 Analysis of Hyper-parameters

Here we discuss the impact of the number of groups, strength of diversity, and

various forms of diversity for language models. Note that the parameters of DBS

(and other baselines) were tuned on a held-out validation set for each experiment.

Further discussion and full experimental results are detailed in the supplement.

Number of Groups (G). Setting G=B allows for the maximum exploration

of the search space, while setting G=1 reduces DBS to BS, resulting in increased

exploitation of the search-space around the 1-best decoding. Empirically, we find

that maximum exploration correlates with improved oracle accuracy and hence

use G=B to report results.

Diversity Strength (λ). The diversity strength λ specifies the trade-off between

the model score and diversity terms. As expected, we find that a higher value of λ

produces a more diverse list; however, very large values of λ can overpower model

score and result in grammatically incorrect outputs. We set λ via grid search over

a range of values to maximize oracle accuracies achieved on the validation set. We

find a wide range of λ values (0.2 to 0.8) work well for most tasks and datasets

with which we experimented.

Choice of Diversity Function (∆). We defined ∆(y, Y ) as a dissimilarity

function between a sequence y and a set of sequences Y . In Section 2.1, we illus-

trated a simple hamming diversity of this form that penalizes selection of tokens

proportionally to the number of time it was used in previous groups. However,

this factorized diversity term can take various forms, encoding different notions
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Figure 2.3: On the PASCAL-50S dataset, we compare the oracle CIDEr@k [31]
for lists sampled using a beam size of 20. While all variants of DBS significantly
outperform DBS, we find that using simple hamming diversity performs best. We
find similar results across other metrics.

of diversity – with hamming diversity being the simplest.

For language models, we consider various forms like cumulative diversity

(time-averaged hamming diversity), n-gram diversity (discourages n-grams oc-

curring in previous groups) and neural embedding based diversity functions that

softly compute dissimilarity using average distances in a semantic space (specif-

ically Word2Vec [30] space). While all diversity functions result in DBS signifi-

cantly outperforming BS, we empirically find that the default hamming diversity

function to be most effective (see Fig. 2.3) and report results based on this diver-

sity measure.

Beam Size (B). While larger beam sizes often lead to better exploration of the

search space, it is computationally expensive. We find that promoting diversity in

the decoded lists via DBS leads to a more efficient usage of the beam budget –

for instance, to achieve a SPICE score of ∼10.89 DBS requires a beam size of 40

compared to the 100 needed by BS.
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an A propeller plane is flying overhead A black sheep dog watches over a black sheep. A double-decker bus is pulling into a bus station.
A old time airplane perform in the air show. A dog and lamb are playing in a fenced area. People walking past a red and white colored bus.
A small plane is flying through the air. A black dog looking at a brown sheep in a field. A double-decker bus pulls into a terminal.
The biplane with the yellow wings flew in the sky. A dog is standing near a sheep. People walk down the sidewalk at a bus station.

C
)B

S

A blue and yellow biplane flying in the sky. A dog sitting on the ground next to a fence. A red double decker bus driving down a street.
A small airplane is flying in the sky. A black and white dog standing next to a sheep. A double decker bus parked in front of a building.
A blue and yellow biplane flying in the sky. A dog is sitting on the ground next to a fence. A double decker bus driving down a city street.
A small airplane flying in the blue sky. A black and white dog standing next to a dog. A double decker bus is parked on the side of the street.

D
)D

B
S A small airplane flying through a blue sky. There is a dog that is sitting on the ground. A red double decker bus driving down a street.

A blue and yellow biplane flying in the sky. An animal that is laying down in the grass. The city bus is traveling down the street.
There is a small plane flying in the sky. There is a black and white dog sitting on the ground. People are standing in front of a double decker bus.
An airplane flying with a blue sky in the background. Two dogs are sitting on the ground with a fence. The city bus is parked on the side of the street.

Figure 2.4: A) Sample PASCAL-50S images of different difficulty. Simple im-
ages are often close-ups of single objects while complex images involve multiple
objects in a wider view. B) Random human captions for the black-bordered im-
ages. Complex images have more varied captions than simpler images. C) which
are not captured well by beam search compared to D) DBS.

2.2 Experiments: Diverse Beam Search

In this section, we evaluate our approach on image captioning, visual question

generation and machine translation tasks to demonstrate both its effectiveness

against baselines and its general applicability to any inference currently supported

by beam search. Further, we explore the role of diversity in generating language

from complex images. We first explain the baselines and evaluations used in the

following sections.

Baselines. Apart from classical beam search (BS), we compare our method

with two related methods;

• [28] modify BS by introducing an intra-sibling rank. For each partial so-

lution, the set of |V| beam extensions are sorted and assigned intra-sibling

ranks k ∈ [|V|] in order of decreasing log probabilities. The log probability
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of an extension is then reduced in proportion to its rank, and continuations

are re-sorted under these modified log probabilities to select the top B ‘di-

verse’ beam extensions, and

• [27] train an additional unconditioned target sequence model U(y) and per-

form BS decoding on an augmented objective P (y|x)− λU(y), penalizing

input-independent decodings.

We compare to our own implementations of these methods as none are publicly

available. Both [28] and [27] develop and use re-rankers to pick a single solution

from the generated lists. Since we are interested in evaluating the quality and

diversity of the entire set of decoded outputs, we simply rank by log-probability.

Hyperparameters. We set all hyperparameters for DBS and the baseline meth-

ods by maximizing oracle SPICE via grid-search on a held out validation set for

each experiment.

Evaluation Metrics. We evaluate the performance of the generated lists using

the following two metrics:

• Sequence Metrics: Task-specific metrics that measure the quality of a sen-

tence against ground truth sequences. We use SPICE [32] for image cap-

tioning and BLEU [33] for machine translation.

• Oracle Performance: Oracle or top k performance w.r.t. some sequence

metric is the maximum value of the metric achieved over a list of k potential

solutions. Oracle performance is an upper bound on the performance of any

re-ranker, measuring the possible impact of diversity.
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• Distinct n-Grams: We count the number of distinct n-grams present in the

list of generated outputs. Similar to [27], we divide these counts by the total

number of words generated to bias against long sentences.

Simultaneous improvements in all metrics indicate that output sequences have

increased in diversity without sacrificing fluency or correctness with respect to the

target tasks.

2.2.1 Estimating Image Complexity

One implicit thesis of this work is that language grounded in complex scenes is

more diverse. To evaluate this claim, we assess if diversity in language generation

leads to larger improvements on more complex images.

One notion of image complexity is studied by Ionescu et al. [34], defining a

“difficulty score” as the human response time for solving a visual search task for

images in PASCAL-50S [31]. Using the data from [34], we train a Support Vector

Regressor on ResNet [35] features to predict this difficulty score. This model

achieves a 0.41 correlation with the ground truth (comparable to the best model

of [34] at 0.47).

To evaluate the relationship between image complexity and performance gains

from diverse decoding, we use this trained predictor to estimate a difficulty score

s for each image in the COCO [36] dataset. We compute the mean (µ = 3.3)

and standard deviation (σ = 0.61) and divide the images into three bins, Simple

(s ≤ µ−σ), Average (µ−σ > s < µ+σ), and Complex (s ≥ µ+σ) consisting

of 745, 3416 and 839 images respectively.
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Figure 3 shows some sample Simple, Average, and Complex images

from the PASCAL-50S dataset. While simple images like close-up pictures of

cats may only be described in a handful of ways by human captioners (first col-

umn), complex images with multiple objects and interactions will be described in

many different ways depending on what is the focus of the captioner (last column).

In the following experiments, we show that improvements from DBS are

greater for more complex images.

2.2.2 Image Captioning

We begin by validating our approach on the COCO [36] image captioning task

consisting of five human generated captions per image. We use the public splits

as in [37] and train a captioning model [4] using the neuraltalk21 codebase.

We compare decoding methods on this model.

Results by Image Complexity. Each approach produces B = 20 candidates

that are ranked by log-probability to compute Oracle SPICE@k for different val-

ues of k. We note that at k = 1 this is directly the standard SPICE evaluation

metric. From Table 2.1, we can see that as the complexity of images increases

DBS outperforms standard beam search (difference shown in parentheses) and

other baselines by larger margins for all values of k. For example, at Oracle

Spice@20, DBS achieves significant improvements over BS of 0.67, 0.91, and

1.13 for Simple, Average, and Complex images respectively. While DBS im-

proves over BS in all settings, complex images benefit even more from diversity-

1https://github.com/karpathy/neuraltalk2
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inducing inference than simple images.

Overall Results. The top half of Table 2.1 shows results and distinct n-gram

statistics on this task. We observe that DBS outperforms BS and [27] while be-

ing comparable to or slightly better than [28] that uses an additional language

model. DBS also generates more distinct n-grams than other baselines and pro-

duces slightly longer captions (an almost 300% increase in the number of 4-grams

and +0.97 words on average w.r.t. BS).

Evaluating Under Greater Human Supervision. While the COCO dataset’s

size enables powerful captioning models to be trained, with only five captions

per image it represents a sparse sample that may miss much of the diversity in

visually grounded natural language. So we also evaluate our COCO trained model

on the PASCAL-50S [31] dataset which consists of 1000 images with 50 captions

each. Having ten times as many captions per image than COCO, the PASCAL-

50S dataset captures greater diversity in human annotations and we would expect

to see diverse decoding have a greater impact in this setting. We keep 200 random

images as a validation set for tuning and evaluate on the remaining images.

Table 2.2 shows results on this transfer task. As expected, we observe that

gains over standard decoding on PASCAL-50S are more pronounced than on

COCO (2.74% vs. 6.33% improvement over BS in SPICE@20 using DBS). As

in the above experiments, we find that DBS outperforms the baseline methods

and produces more diverse captions. Moreover, we note that DBS finds top-1 so-

lutions with higher log-probability on average – obtaining an average maximum

log probability of -6.53 opposed to -6.91 found by BS at the same beam width.
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This empirical evidence suggests that using DBS instead of BS may lead to lower

approximate inference error in some cases in addition to improved diversity.

Human Preference by Difficulty. To further establish the effectiveness of our

method, we evaluate human preference between captions decoded using DBS and

BS. In this forced-choice test, DBS captions were preferred over BS 60% of the

time by human annotators. Further, they were preferred about 50%, 69% and 83%

of the times for Simple, Average and Difficult images respectively. Fur-

thermore, we observe a positive correlation (ρ = 0.73) between difficulty scores

and humans preferring DBS to BS. Further details about this experiment are pro-

vided in the supplement.

2.3 Decoding Sets of Sequences

Given an input x, sequence prediction problems require outputting a single se-

quence y that it is highly valued as measured by some task specific metric φ(y|x);

for example, BLEU [33] is a commonly used metric for language generation tasks.

However, many real-world sequence prediction problems are inherently multi-

modal i.e.for a given input, there can be multiple outputs Y = {y1,y2, . . .yK}

that are highly valued according to the metric. As discussed in previous sections,

the task of image captioning [36] admits multiple correct outputs because an im-

age can be accurately described in numerous ways by focusing on different objects

and interactions present in the image [38]. Being able to produce multiple relevant

output sequences is not only important from a modeling perspective, but is also

beneficial even in tasks in which a single best output is ultimately required. For
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example, in the task of automated response suggestion for email, [39] allow the

user to select from a set of generated responses with different sentiments. Simi-

larly, producing multiple outputs and then reranking them leads to improvements

in the task of machine translation [40, 28]. In these settings where a set of se-

quences is expected, the quality of the generated set is measured using set-level

metrics Φ(Y|x) that evaluate higher-order interactions between elements of the

decoded set. For example, oracle accuracy is a set-level metric that corresponds

to the maximum sequence level score achieved by any of the sequences in the gen-

erated set. It is commonly used as a proxy for a downstream selection mechanism

[41, 22].

Decoding K outputs using Sequence Models. In practice, the standard single-

sequence prediction pipeline can be used to produce a set of K outputs. In this

setup, neural sequence models like RNNs, LSTMs [3] or Transformers [6] trained

to maximize the likelihood of individual sequences are used in conjunction with

approximate top-K inference procedures like Beam Search (BS). As the goal of

this procedure is to find the single best output, BS does not consider intra-set inter-

actions in the decoded output set. Naturally, this leads to the decoding of largely

redundant output sets containing near identical sequences [13, 28, 42]. While the

specific issue of diversity has been addressed by a variety of approaches that ei-

ther modify the training objective [43, 44], learn model ensembles [45, 46, 47] or

modify the inference procedure [13, 28], these methods are incapable of modeling

higher-order interactions between the sequences in the decoded set and by exten-
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sion, cannot optimize arbitrary set-level metrics.

Trainable Decoding of Sequence Sets. In this section, we propose ∇BS2, a

trainable decoder that finds approximate solutions for the best set of K sequences

by accounting for intra-set interactions. Our approach directly models a set of out-

puts and allows for maximizing both the set-level metric of interest, or the like-

lihood of a target set when multiple ground truth annotations are provided. We

achieve this by treating the task as a sequential subset selection problem, a novel

perspective that allows us to utilize techniques from the well-studied problem of

cardinality-constrained submodular maximization [48]. Our method closely mim-

ics BS; replacing the likelihood informed pruning of the search space with a subset

selection step that is guided by a learned submodular set function. Unlike exist-

ing sequence models, our approach considers intra-set interactions and induces a

distribution over sets of sequences allowing the use of greedy decoding to find the

the maximizer set of size K.

Contributions. In summary, the primary technical contribution of our work is

∇BS, a task-agnostic trainable decoding procedure for sets of sequences. In the

context of the proposed decoder, we discuss various training strategies inspired

from both supervised learning and reinforcement learning that ensure stable train-

ing while mitigating loss-evaluation mismatch and exposure bias [49]. Further,

2pronounced diff-BS, code available at https://github.com/ashwinkalyan/
diff-bs
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we motivate a new set-level metric inspired by the facility location problem [50]

that naturally evaluates the notion of “capturing the variation in the output space”.

Finally, we choose the popular sequence prediction task of image captioning to

demonstrate the effectiveness of our method and find that our approach, ∇BS

consistently outperforms standard techniques and ablations of our method on rel-

evant set-level metrics.

2.3.1 Related Work

Predicting Set-Valued Outputs There are comparatively few works that focus

on predicting permutation invariant set-valued outputs using deep learning. [51]

investigate commutative pooling operators for processing set-valued inputs, but

with a focus on classification and regression problems. [52] and [53] predict set-

valued outputs by learning both the cardinality and the state distribution of the

target set. However, these approaches define the output space in terms of the pos-

sible subsets of some pre-existing support set, and so none of these approaches are

applicable to the generative task of predicting sets of sequences. Recent work by

[54] aims at predicting diverse sequences but significantly differs from our work

as they only consider the task of retrieval as opposed to sequence prediction.

Diverse Sequence Generation The most obvious way to generate sets of se-

quences is to apply beam search decoding to a standard neural sequence model

such as an LSTM [3]. However, it is well known that the resulting sequences lack

diversity [26, 27, 28]. A number of papers have tackled the problem of diverse
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sequence generation, either by modifying the training objective [44, 43, 55], using

model ensembles [45, 47, 46] or by modifying the decoding procedure [13, 28].

However, none of these approaches are capable of directly learning the interac-

tions between sequences in a set. Our model learns these interactions and can be

optimized for any arbitrary set-level metric.

Trainable Sequence Decoding As detailed further in Section ??, our proposed

approach constructs a set of K sequences in the output set incrementally, and can

thus be interpreted as a trainable generalization of beam search. Therefore, al-

though our motivations differ, our method is related to recent research that seeks

to unify sequence model training and decoding regimes, either by modifying the

training procedure [56, 57, 58], or by casting sequence decoding as an optimiza-

tion problem [59, 60, 61]. Notably, our approach differs from [58] as it avoids

train-test mismatch by sampling in both phases and further, modeling intra-set

interactions.

2.4 ∇BS: Trainble Decoding of Sets of Sequences

We are interested in predicting a set of K sequences Y = {y1,y2, . . .yK} given

some input x such that Y is highly valued according to some set-level metric

Φ(Y|x). While neural sequence models have been used to address this problem in

conjunction with decoding strategies like Beam Search, existing approaches can

neither learn intra-set interactions nor optimize for arbitrary set-level metrics. In

this work, we propose ∇BS, a novel trainable set decoding procedure capable of
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modeling interactions between elements of the set. Further, our approach tightly

integrates the training and decoding phases overcoming exposure bias or loss-

evaluation mismatch suffered by standard sequence models.

2.4.1 Decoding As Sequential Subset Selection

Taking a high-level view, each step of Beam Search (BS) decoding performs a

subset selection that is informed by the likelihood of sequences under the trained

model – selecting the K most likely sequences from the K × |V| options. Unlike

likelihood that guides BS to perform this subset selection, it is often a strong re-

quirement for the metric Φ(·|x) to decompose across time steps in a similar man-

ner; ruling out a naı̈ve greedy decoder like BS informed by the set-level metric.

Therefore, we are instead learning to select subsets, i.e.solve the
(
K×|V|
K

)
problem

of selecting the K most promising alternatives such that the resulting set YT after

T time steps is highly valued by the set-level task metric Φ(·|x).

Submodular Functions and Sequence-level Metrics. Task-specific metrics typ-

ically evaluate a notion of coverage i.e.highly valued outputs must overlap sig-

nificantly with the “correct” outputs. For example – at a high level, metrics for

language generation tasks evaluate a candidate sentence by checking for shared

n-grams with a reference sentence. Submodular functions, an important class of

set functions, elegantly capture the notion of coverage and therefore have not only

motivated the development of popular sequence-level metrics [62] but some pre-

viously proposed metrics have been showed to belong to this function family [63].
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With the notion of coverage guiding the development of sequence-level metrics,

various simple set-level metrics like average or maximum of individual sequence

level-scores can also be shown to be submodular (as submodularity is preserved

by these operations). While it may not possible to always show that task-specific

metrics are exactly submodular, it can be expected that they are at least approxi-

mately submodular. This link between submodular functions and set-level metrics

motivates us to develop a subset selection mechanism that uses submodular max-

imization at its core.

Before explaining our method in its entirety, we provide a brief overview of

submodular functions and explain the classic greedy algorithm for maximizing

them in the presence of cardinality constraints.

Submodular Maximization. Given a ground set V , a set function f : 2V → R≥0

assigns a value for all sets S ⊆ V . Finding a subset of some bounded size K that

maximizes the set function i.e.argmaxS⊆V,|S|≤K f(S) is a natural way of char-

acterizing various coverage problems – for example, finding where to place K

sensors such that the covered area as measured by f is maximized. Despite its

usefulness, this maximization is NP hard for arbitrary functions. However, the

classic result of [48] shows that a greedy strategy achieves a constant factor ap-

proximation ratio of (1 − 1e) if the function f is monotone submodular. Given

sets S, T s.t. S ⊆ T ⊆ V and e ∈ V\T , a set function f : 2V → R is submodular

if

f(S ∪ {e})− f(S) ≥ f(T ∪ {e})− f(T )
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i.e.adding an element to a larger set results in smaller gains; capturing the notion of

diminishing returns. The marginal utility of adding a new element to the set (e.g.

increase in coverage by placing a sensor) is given by the difference, f(S ∪{e})−

f(S) which we denote by ∆f (e|S). Further, the function f is (a) monotone if

f(S) ≤ f(T ),∀S ⊆ T ⊆ V and (b) normalized if f(∅) = 0. The greedy strategy

of [48] adds the element with the largest marginal gain at each step i.e.

Ak ← Ak−1 ∪ argmax
e∈V\Ak−1

∆f (e|Ak−1)

to yield AK s.t. f(AK) ≥ (1− 1e) f(A∗) after K steps.

Learning Subset Selection. Provided a submodular function that estimates

the utility of the set chosen w.r.t. to maximizing the final set-level metric, we can

construct a set-level policy to find the approximate maximizer using the greedy al-

gorithm. Since the sequence-level metric does not decompose over time steps, the

choice of a submodular function that can estimate the utility of a partial solution

is not obvious. Following [diff˙submod˙2018], we choose to learn an appropriate

function maximizing which yields good approximate solution sets. Further, they

show that this maximization can be made differentiable by replacing the argmax

operation by a τ operation with temperature τ > 0 and iteratively sampling each

element3 proportional to exp(∆f (e|Ai−1)/τ) – yielding an updated approximation

ratio of 1−1/e−ε(τ), where ε(τ) is some decreasing function of the temperature.

3instead of selecting the one with the highest marginal gain
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Algorithm 2 Sequential Subset Selection
input: fβ,x,V , τ,K, T
output: YT = {y1,y2, . . .yK}
Y0 → ∅
for t ∈ [T ] do
Ct ← Yt−1 × V
S0 ← ∅
for k ∈ [K] do

gk[i]← ∆fβ(c|Sk−1), ∀c ∈ Ct\Sk−1

sk ∼
(
gkτ
)

Sk ← Sk−1 ∪ {sk}
Yt = SK

return YT

Sequential Subset Selection. Finally, given a submodular function fβ parametrized

by β, a suitable temperature τ and other inputs necessary to perform BS, a straight-

forward algorithm for sequential subset selection can be written down (Algorithm

1); with bounded approximation error for each time step. At each time step t,

given the set of partial sequences Yt−1, all possible extensions Ct = Yt−1 × V are

produced and sampled from sequentially. Specifically, the kth sequence sky is sam-

pled according to exp(∆f (·|Sk−1
t )/τ) and added to a working set Sk−1

t such that

Skt = Sk−1
t ∪ {skt }. This sampling procedure additionally allows us to compute

the likelihood of the alternatives chosen at time t, Pf (Yt|Yt−1,x) as:

∏
k∈K

exp(∆f (s
k
t |Sk−1

t ))∑
s∈Ct\Sk−1

t
exp(∆f (s|Sk−1

t ))
(2.6)

If the order of the elements in the set does not matter, the probabilities of all

permutations must be summed; however, we simply multiply by K! to approxi-
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mate this quantity [diff˙submod˙2018]. Combined with this sampling procedure,

any given f implies a probability distribution on all full-length sequence subsets

S ∈ 2Y suitable for the policy π, namely

Pf (YT |x) =
∏
t∈T

Pf (Yt|Yt−1,x) (2.7)

Connection to Sequence Level Training. In the restricted setting of argmax

or greedy decoding (BS with K = 1), [49], [59], etc. learn a policy π(·|x) such

that acting according to it maximizes the sequence level metric φ(·|x) i.e.

π∗ = argmax
π∈Π

E(y1,...yT )∼π(·|x) [φ(y|x)]

Following the probabilistic interpretation of the submodular maximization proce-

dure shown in (2.7), our approach lifts this greedy decoding strategy to reason

about sets and thus, handle “beam search” (K > 1) i.e.

π∗ = argmax
π∈Π

E(Y1,...YT )∼π(·|x)[Φ(Y|x)] (2.8)

As we will see later in Section 2.4.3, this connection allows us to come up with

different strategies to train our model in different scenarios.

With this formulation, learning to predict sets of sequences that maximize the
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set-level metric requires learning a suitable monotone submodular function f .

2.4.2 Learning a Submodular Selection Policy

We would like to learn a monotone, submodular function fβ : 2Y → R parame-

terized by β such that sampling from the policy induced by its maximization as

described above maximizes the set-level task metric φ(Y|x), that is to say

fβ = argmax
f

EY∼πf [Φ(Y|x)] (2.9)

In this section, we discuss the form and training of fβ .

Parameterizing Submodular Function f . We apply recent work on deep sub-

modular function (DSF) modeling from [51, 64] to construct f . To familiarize

the reader with this work, we note the key result that given non-negative input

features x+, a monotone submodular function can be parameterized by a neural

network of arbitrary depth provided it consists of multiplication operations with

non-negative weights and element-wise non-decreasing concave activation func-

tions. We encourage readers to see these works for full details.

Constructing parametrized submodular functions requires suitable representations

of sets. At each time step t, the set of partial solutions Yt−1 = {yt1, . . . , ytK} are

represented by their hidden states from an LSTM, i.e.hkt = LSTM(ytk) and each

token in V is represented by its corresponding word-vector vt ∈ Rd. Therefore,
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each alternative ct ∈ Ct = Yt−1×V can now be represented by a concatenation of

these two representations, [ht,vt]. Given a set S ⊆ Ct, we compute a permutation

invariant set representation as

ψβ(S) =
∑
ct∈S

{([ht,vt])}+ (2.10)

using an MLP followed by a ReLU non-linearity (denoted by ·+) to ensure non-

negativity of the features. Importantly, the bias of the MLP is set to 0 to ensure that

the submodular function is normalized by construction4. The submodular function

fβ is now defined similar as a two-layer DSF with the element-wise non-negative

monotone concave function σ(·) = log(1 + ·),

fβ(S) = w>2 σ(W>
1 σ(ψβ(S))) (2.11)

whereW1 ∈ Rd×m
≥0 and w2 ∈ Rm

≥0. The parameters of a DSF can be learnt via gra-

dient descent using automatic differentiation, similar to deep networks. However,

the weights need to be non-negative, so an additional projection step is required

which we denote by Π≥0. In practice, evaluating the submodular function for all

the elements in the ground setK×V can be slow (for e.g. |V| in the case of COCO

captioning task is∼10000). In such cases, a standard sequence model can be used

to first coarsely select the top K ′ > K elements.

4The initial hidden state representing no history and the dummy input (e.g. start token) are both
represented by vectors of all zeros.
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Connection to DivMBest. Allowing the function f to be arbitrary and not re-

stricting it to be submodular, modifies our approach to a learnable variant5 of

Diverse Beam Search (DBS) [13]. Extending DivMBest [22] to sequence models,

DBS greedily selects K alternatives at each step by adding diversity constraints

after each element is selected. While hand-crafted diversity penalties (e.g. ham-

ming or n-gram distance based diversity) are used in DBS, this penalty is instead

learned by the set function f .

2.4.3 Training A DSF for Set Decoding.

In this subsection, we discuss various training strategies to obtain good subset se-

lection policies in practice.

Cross Entropy Loss. For many sequence prediction tasks, datasets contain multi-

ple correct outputs – for instance, image captioning datasets like COCO [36] have

five captions per image. In this case, the policy can be trained via teacher-forcing

i.e.the cross-entropy loss of the model’s predictions and the “ground-truth” sub-

set is minimized at each time step. For example, if the oracle chooses subset

Y∗t = {yk<t}k∈K at time t ∈ [T ], then the the policy incurs the loss:

L(π) = −
∑
t∈[T ]

logP(Y∗t |Y∗t−1,x)

5Removing the inductive bias and using standard MLPs instead of DSFs leads to worse perfor-
mance; more details in the supplement.
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This method, which we denote by CE, is applicable only when multiple annota-

tions are available during training.

REINFORCE. Unlike CE, this strategy directly optimizes for the task-specific

metric and only requires the ability to query the metric. This strategy, denoted

by RE, minimizes the objective in (2.7) by computing the gradient using REIN-

FORCE [65] as:

J(π)β = EY1,...YT

[
(φ(Y|x)−b)

∑
t∈T

logP(Yt|Yt−1)β

]

Here, b is a baseline reward that is subtracted to reduce the variance in the gradi-

ent estimates [66]. For example, choosing the baseline to be the value achieved by

beam search ensures that the learnt policy is competent w.r.t. to it [67]. While this

training strategy fixes both exposure bias and loss-evaluation mismatch, it suffers

from noisy gradients despite using suitable baselines leading to poor convergence

properties.

Queriable Expert. In many scenarios where output sets need to be produced,

only one ground truth annotation may be available; ruling out the use of CE. As

training via RE is extremely unstable, Imitation Learning strategies like DAgger

[68] that use a queriable expert are often employed to warm start the policy. This

setting can be used to warm-start the set-level decoder by obtaining K outputs via

BS and then using them to serve as expert supervision.
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Our proposed algorithm, ∇BS can be trained in a stable manner using a mix-

ture of the above strategies. MIXER [49], a hybrid strategy that uses both CE and

RE trains the model for the first τ time steps using CE and then training with RE

for the rest of the time; gradually reducing τ to 0. As proposed by [61], QE can

be used to train a reasonably good model that can be finetuned further using RE.

Further, the entire model can be trained in an end-to-end fashion (denoted by EE)

by backpropagating the gradients into the LSTM (the state transition function)

producing the hidden states.

2.5 Experiments: Trainable Decoding Sets of Sequences

In this section, we first discuss the trade-offs of different set-level metrics and

then motivate a new set-level metric that evaluates the multi-modality in the out-

put space. Next, we proceed to explaining the different evaluation metrics and

baselines used in this work. We then report results on the visually-grounded lan-

guage generation task of image captioning. Finally, we present a discussion on

variants of our method and its applicability in different scenarios.

2.5.1 Set-Level Metrics for Language Generation.

Sequence level metrics for language generation tasks like BLEU [33], CIDEr [31]

and SPICE [32] evaluate a decoded sequence by comparing it against a reference
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annotation in some feature representation6. Oracle accuracy, a popular set level

metric [41, 22, 45, 44] used to evaluate the quality of decoded sets is constructed

by using individual sequence level scores. Specifically, it corresponds to the best

score achieved by any decoded sequence i.e.maxy∈Y{φ(y|x)}. This serves the

role of a downstream mechanism that selects the most appropriate sequence – for

example, a human user or a reranker. While this is a reasonable choice when only

one reference annotation is available, it is insufficient when multiple reference

sentences are available; often the case with inherently multimodal tasks like im-

age captioning. Oracle accuracy can be optimized by producing only one good

caption that aligns well with the ground truth and therefore fails to penalize not

covering the full variation present in human annotations.

To address this shortcoming of oracle accuracy, we propose a new set-level metric

inspired by the classic facility location problem [50]. Similar to oracle accuracy,

the proposed faccuracy metric also uses sequence level scores and is given by∑
r∈Rmaxc∈C φ(r|c) where R and C are the reference and candidate sequence

sets respectively. This metric values output sets that contain sequences that max-

imize the sequence-level metric for each of the reference annotations; avoiding

the shortcomings of oracle accuracy. Further, it is easy to notice that this set-level

metric reduces to oracle accuracy when only one reference annotation is present.

Additionally, the proposed faccuracy is also submodular; the notion of diminish-

6If Yx are the references corresponding to the input x, we write φ(·|Yx) for φ(·|x) with some
abuse of notation.
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ing returns is observed as the value of adding new sequences after all references

have been “covered” is little. In summary, the proposed fac metric extends oracle

accuracy to consider higher order interactions between decoded sequences in a

manner that naturally evaluates for the variation present in the reference set.

Baselines. We are interested in the task of generating a set of captions that are

highly valued by set-level metrics like faccuracy and oracle accuracy. All meth-

ods are evaluated and optimized (if applicable) using CIDEr [31] as the underlying

sequence-level metric. Additionally, all methods decode K = 5 sequences per in-

put.

We compare our approach against the most natural baseline – a standard se-

quence prediction model decoded using BS (which we denote by Seq-BS). Next,

we compare against using a diversity-promoting decoding procedure, Diverse

Beam Search [13] along with a sequence prediction model (Seq-DBS). Outper-

forming a tuned version of DBS implies that the our proposed algorithm intro-

duces diversity appropriately without having to explicitly incentivize it. Addi-

tionally, we compare against rennie2017self, a sequence level model that uses

REINFORCE to directly optimize the metric along with beam search decoding.

This model, denoted by SCST, uses the score achieved by beam search under the

current model as baseline to stabilize the training procedure. Further, we compare

to the following ablations of our model that can be constructed by the various

training strategies discussed in Section 2.4:
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1. ∇BS-CE: This approach corresponds to training the model first using standard

teacher forcing (CE, see Section 2.4). This approach is feasible when multiple

annotations are available While this method suffers from both exposure bias and

loss-evaluation mismatch, it still treats the outputs as a set and hence is capable of

modeling intra-set interactions.

2. ∇BS-CE-EE: This is a natural extension of the previous baseline that back-

propagates the gradient not only into the DSF but also into the underlying LSTM

network. In practice, the finetuning begins after the DSF has been trained for a

few rounds.

3. ∇BS-CE-RE: This approach corresponds to training the model first using

CE and then using REINFORCE (RE); optimizing directly for the set-level met-

ric. Improving the model using RE “fixes” both loss-evaluation mismatch and

exposure bias.

4. ∇BS-MIXER [49]: This approach is similar to ∇BS-CE-RE but differs in

that the two methods operate simultaneously instead of being applied one after

the other. The approach works by using CE for the first τ ∈ [T ] steps and then

trains via RE for the rest T − τ steps. The value of τ is gradually reduced from T

(corresponding to ∇BS-CE) to 0 (corresponding to ∇BS-RE) thereby following

a curriculum that spans a spectrum of training methods.

2.5.2 Image Captioning

In this section, we explain the experimental setup and report results for the image-

captioning task.
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Datasets and Models. We show results on three captioning datasets of increas-

ing size – Flickr8k, Flickr30k [69] and the large scale COCO dataset [36]. All of

these datasets are multimodal and have 5 captions associated with each image. For

the first two Flickr datasets, 1000 images each are used for validation and testing

while using the rest (6000 and ∼28000 respectively) for training. For COCO, a

similar split is used but the number of images used for validation and testing each

is 5000.

The underlying sequence level model is an encoder-decoder architecure proposed

by [4]; a single layer LSTM with 1024 hidden units. For the DSF, we use a two-

layer MLP, as defined in (2.11) with d = 1024 (LSTM hidden size) and m = 512.

The input image is treated as the first word and is represented using activations of

the penultimate layer of ResNet-152 [35] network, pretrained on Imagenet [70].

Both the DSF and the LSTM (in the case of EE) are trained using Adam [71] with

a learning rate of 1e− 4 and 1e− 5 respectively. We set the beam size K = 5 in

all our experiments. As mentioned in Section 2.4, we first do a coarse selection

using a standard sequence model; inputting only the top-100 alternatives corre-

sponding to each partial solution to the DSF. Importantly, note that this trick is

required only to speed up the training phase. Further, all variants of o ur approach

are warm started from standard sequence prediction trained via MLE.

Evaluation. When training using RE, we use CIDEr [31] to compute faccu-
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racy and optimize for it; TF-IDF vectors for computing CIDEr are obtained from

COCO-validation split. However, we report results on all the commonly used cap-

tioning metrics – BLEU-4 [33], METEOR [72], ROUGE [73], CIDEr and SPICE

[32]. Additionally, we report distinct n-grams, a metric introduced by [28] to

serve as an indicator of the diversity in the decoded lists. Specifically, we report

the number of unique 4-grams and normalize it by the number of words to bias

against larger sequences.

As we see from Table 2.3, variants of ∇BS outperform standard sequence

models used with BS or DBS. Further, they also outperform [67] that directly

optimizes for the metric. Among the proposed decoders, the ∇BS-MIXER and

∇BS-CE-RE-EE variants perform the best, each performing best on certain met-

rics. Importantly, these trends hold across all three data-sets used in this experi-

ment.

In section 2.5.3, we discuss the applicability of our method in various scenar-

ios – particularly, the situation of captioning images with varying “complexity”

and while decoding for objectives other than diversity.

2.5.3 Discussion.

In this subsection, we discuss different variants of our method and its applicability

in different scenarios.

Is Diversity Always Required? While diversity in the decoded captions is ben-
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eficial, it may not always be necessary. For example, it may not be possible to

describe an image containing one object (e.g. a close up of a cat) in diverse ways.

Following the analysis of [13], we divide the images in the test set into three sets –

simple, average and complex, based on their image complexity scores [34].

These scores are higher for images with many objects and are in some sense, re-

flective of the “complexity” of the image. As seen from Table 2.3 and Table 2.4,

our method∇BS-CE-RE-EE performs consistently well on all three splits of vary-

ing complexity.

Set-metrics with Combinatorial Constraints. To demonstrate the ability of our

method in handling arbitrary set-level constraints, we optimize set-level metrics

with combinatorial constraints; for e.g. in the context of automatic response sug-

gestion [39], such a set-level metric can reward the first two sequences based on

the presence of positive sentiment and the rest, on negative sentiment. In our im-

age captioning setup, we instantiate such a metric by using CIDEr to reward the

first two sequences and SPICE for the remaining three (K = 5). We observe that

first 2 sequences get a higher CIDEr score (an average of 1.1623 against a SPICE

score of 0.1622) and similarly, the remaining three sequences achieve a higher

SPICE score (0.1698 as compared to a CIDEr score of 1.0624).

2.6 Conclusion

Producing a set ofK outputs is beneficial for tasks that are inherently multimodal,

admitting multiple correct outputs for a single input. Further, many tasks that de-
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sire a single best output produce such a set of outputs as an intermediate step.

Despite its widespread usage, existing sequence prediction models used in con-

juction with decoding strategies like BS fail to produce good output sets; often

producing largely redundant sequences with minor varations. To address this we

propose∇BS, a trainable decoder for sets of sequences. Our method accounts for

higher order interactions like diversity by modeling intra-set interactions and can

be tuned to optimize arbitrary set-level metrics. Finally, we report results on the

language generation task of image-captioning and include a discussion of variants

of our method and its applicability in different scenarios.
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Table 2.1: Top: Oracle SPICE@k and distinct n-grams on the COCO image cap-
tioning task atB = 20. While we report SPICE, we observe similar trends in other
metrics (reported in the supplement). Bottom: Breakdown of results by difficulty
class, highlighting the relative improvement over BS.

Method SPICE Oracle SPICE@k Distinct n-Grams

@5 @10 @20 n = 1 2 3 4

C
O

C
O

BS 16.27 22.96 25.14 27.34 0.40 1.51 3.25 5.67
[28] 16.35 22.71 25.23 27.59 0.54 2.40 5.69 8.94
DBS 16.783 23.08 26.08 28.09 0.56 2.96 7.38 13.44

[27] 16.74 23.27 26.10 27.94 0.42 1.37 3.46 6.10

Method SPICE
Oracle SPICE@k (Gain over BS)

@5 @10 @20

Si
m

pl
e

BS 17.28 (0) 24.32 (0) 26.73 (0) 28.7 (0)
[28] 17.12 (-0.16) 24.17 (-0.15) 26.64 (-0.09) 29.28 (0.58)
DBS 17.42 (0.14) 24.44 (0.12) 26.92 (0.19) 29.37 (0.67)

[27] 17.38 (0.1) 24.48 (0.16) 26.82 (0.09) 29.21 (0.51)

A
ve

ra
ge

BS 15.95 (0) 22.51 (0) 24.8 (0) 26.55 (0)
[28] 16.19 (0.24) 22.59 (0.08) 24.98 (0.18) 27.23 (0.68)
DBS 16.28 (0.33) 22.65 (0.14) 25.08 (0.28) 27.46 (0.91)

[27] 16.22 (0.27) 22.61 (0.1) 25.01 (0.21) 27.12 (0.57)

C
om

pl
ex

BS 16.39 (0) 22.62 (0) 24.91 (0) 27.23 (0)
[28] 16.55 (0.16) 22.55 (-0.07) 25.18 (0.27) 27.57 (0.34)
DBS 16.75 (0.36) 22.81 (0.19) 25.25 (0.34) 28.36 (1.13)

[27] 16.69 (0.3) 22.69 (0.07) 25.16 (0.25) 27.94 (0.71)
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Table 2.2: Oracle SPICE@k and distinct n-grams PASCAL-50S atB = 20. While
we report SPICE, we observe similar trends in other metrics (reported in the sup-
plement).

Method SPICE Oracle SPICE@k Distinct n-Grams

@5 @10 @20 n = 1 2 3 4

PA
SC

A
L

-5
0S BS 4.93 7.04 7.94 8.74 0.12 0.57 1.35 2.50

[28] 5.08 7.24 8.09 8.91 0.15 0.97 2.43 5.31
DBS 5.357 7.357 8.269 9.293 0.18 1.26 3.67 7.33

[27] 5.12 7.17 8.16 8.56 0.13 1.15 3.58 8.42

Table 2.3: On all the captioning datasets,∇BS variants (MIXER and CE-RE-EE)
outperform standard baselines and ablations. However, in terms of sheer diversity
(as measured by distinct n-grams, Seq-DBS is still better. All the methods decode
K = 5 outputs and further, we scale faccuracy values in the table by K for better
readability.

Dataset Method Faccuracy (K = 5) Oracle Accuracy (K = 5) distinct 4-grams
BLEU ROUGE CIDEr SPICE METEOR BLEU ROUGE CIDEr SPICE METEOR

Flickr-8k

Seq-BS 0.2510 0.3149 1.7548 0.1534 0.1625 0.2712 0.4576 1.6564 0.1496 0.2351 17.38
Seq-DBS 0.2583 0.3171 1.8374 0.1598 0.1607 0.2564 0.4535 1.6571 0.1572 0.2309 64.44

SCST 0.2643 0.3204 1.8521 0.1632 0.1754 0.2644 0.4589 1.6792 0.1623 0.2386 25.79

∇BS-CE 0.2681 0.3225 1.8946 0.1671 0.1751 0.2702 0.4592 1.7023 0.1643 0.2415 33.90
∇BS-CE-EE 0.2685 0.3242 1.9142 0.1682 0.1751 0.2716 0.4597 1.7146 0.1645 0.2421 32.19
∇BS-CE-RE 0.2707 0.3276 1.9238 0.1723 0.1822 0.2738 0.4618 1.7424 0.1664 0.2457 35.41
∇BS-MIXER 0.2697 0.3280 1.9224 0.1782 0.1782 0.2741 0.4614 1.7487 0.1659 0.2462 35.85
∇BS-CE-RE-EE 0.2712 0.3279 1.9287 0.1806 0.1849 0.2740 0.4624 1.7459 0.1667 0.2464 34.94

Flickr-30k

Seq-BS 0.2510 0.2916 1.7017 0.1643 0.1625 0.2781 0.4253 1.5850 0.1496 0.2351 18.04
Seq-DBS 0.2625 0.2958 1.7726 0.1629 0.1607 0.2782 0.4292 1.5828 0.1572 0.2309 64.18

SCST 0.2742 0.3124 1.7543 0.1664 0.1649 0.2804 0.4335 1.5974 0.1601 0.2390 27.42

∇BS-CE 0.2788 0.3186 1.7724 0.1672 0.1653 0.2816 0.4378 1.6104 0.1617 0.2427 35.62
∇BS-CE-EE 0.2793 0.3195 1.7812 0.1672 0.1657 0.2821 0.4467 1.6156 0.1621 0.2430 36.11
∇BS-CE-RE 0.2794 0.3206 1.7942 0.1679 0.1665 0.2845 0.4514 1.6233 0.1627 0.2366 36.84
∇BS-MIXER 0.2798 0.3215 1.8006 0.1688 0.1669 0.2839 0.4529 1.6229 0.1628 0.2471 35.91
∇BS-CE-RE-EE 0.2794 0.3211 1.8032 0.1685 0.1678 0.2846 0.4519 1.6238 0.1632 0.2472 35.23

COCO

Seq-BS 0.2842 0.4892 1.5324 0.1724 0.2541 0.2839 0.5204 1.4208 0.1701 0.2570 20.04
Seq-DBS 0.2915 0.4917 1.5266 0.1731 0.2585 0.2782 0.5247 1.4306 0.1708 0.2614 68.18

SCST 0.2942 0.5012 1.5521 0.1739 0.2601 0.2804 0.5287 1.4421 0.1724 0.2664 30.42

∇BS-CE 0.3015 0.5006 1.5721 0.1725 0.2605 0.2816 0.5276 1.4452 0.1722 0.2652 32.62
∇BS-CE-EE 0.3011 0.5011 1.5784 0.1728 0.2609 0.2821 0.5288 1.4461 0.1726 0.2660 34.19
∇BS-CE-RE 0.3056 0.5018 1.5894 0.1742 0.2656 0.2845 0.5296 1.4521 0.1759 0.2687 34.24
∇BS-MIXER 0.3022 0.5023 1.5870 0.1736 0.2645 0.2839 0.5294 1.4618 0.1740 0.2689 33.01
∇BS-CE-RE-EE 0.3063 0.5021 1.5995 0.1745 0.2661 0.2846 0.5314 1.4598 0.1765 0.2697 35.84
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Table 2.4: Captions produced by our approach∇BS compared against Human
annotations, BS and DBS for two images – one simple image that has less

variation in human annotations and a complex image that has multiple objects
and interactions, exhibiting greater variation in human generated captions. While

BS tends to be largely repetitive, DBS, with parameters tuned based on a
validation set, tends to produce diverse captions while some of which might not

be applicable to the image. On the other hand,∇BS strikes a balance between the
two procedures in terms of diversity, aligning with the observations from Table 1.

Captions produced by

Humans Beam Search Diverse Beam Search ∇BS-CE-RE

A white and brown dog is asleep underneath a small table A black and white dog is looking at the camera A dog is looking out of a window A white dog sitting on the ground
A dog is sleeping under a table A black and white dog sitting on the floor A dog sitting in a window looking at something A black and white dog sitting on the floor
A dog is sleeping under a chair A black and white dog laying on the floor A black and white dog is sitting on the floor A black and white dog laying on the floor

A spotted dog is asleep under a table A black and white dog laying on the floor The dog is sitting on the floor looking at the camera The dog is sitting in the room
A dog is sleeping on the floor A brown and white dog sitting in the room A white dog is looking at a cat The dog is laying on the floor

Three people posing on a boat A man and a woman on a boat in the water A man and a woman are standing on a boat A man and a woman standing in front of a boat
Two women and a man on a boat are posing for a picture A man and a woman standing next to a small boat A man and a woman standing on a boat with a dog Two people standing on a boat in the water

Three people are riding in a boat on a sunny day A man and a woman sitting on a boat in the water Two people standing on a boat in the water A woman in pink dress standing on a boat
A group of people on a boat A man standing next to a woman on a boat Two people standing in front of a boat A young man holding his cellphone

Three friends enjoying a boat ride A man and a woman riding a boat The young man is holding his cellphone An older man and a woman standing on a boat

Table 2.5: The∇BS-CE-RE-EE variant of our model performs equally well (score
on the entire COCO test split is 1.5995 and 0.1745 for CIDEr and SPICE re-
spectively) across all levels of complexity; demonstrating that learning to decode
learns to promote diversity while being aware of the contents of the image.

Split
Faccuracy

CIDEr SPICE

simple 1.5723 0.1724

average 1.6015 0.1751

complex 1.6012 0.1754
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CHAPTER 3

ACCELERATING SEARCH WITH LEARNT HEURISTICS

Automatic synthesis of programs that satisfy a given specification is a classical

problem in AI [74], with extensive literature in both machine learning and pro-

gramming languages communities. Recently, this area has gathered widespread

interest, mainly spurred by the emergence of a sub-area – Programming by Ex-

amples (PBE) [75]. A PBE system synthesizes programs that map a given set

of example inputs to their specified example outputs. Such systems make many

tasks accessible to a wider audience as example-based specifications can be easily

provided even by end users without programming skills. See Figure 3.1 for an

example. PBE systems are usually evaluated on three key criteria: (a) correct-

ness: whether the synthesized program satisfies the spec i.e. the provided example

input-output mapping, (b) generalization: whether the program produces the de-

sired outputs on unseen inputs, and finally, (c) performance: synthesis time.

State-of-the-art PBE systems are either symbolic, based on enumerative or de-

ductive search [75, 2] or statistical, based on data-driven learning to induce the

most likely program for the spec [76, 77, 5]. Symbolic systems are designed to

produce a correct program by construction using logical reasoning and domain-

specific knowledge. They also produce the intended program with few input-

output examples (often just 1). However, they require significant engineering ef-

fort and their underlying search processes struggle with real-time performance,
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Figure 3.1: An example input-output spec; the goal is to learn a program that
maps the given inputs to the corresponding outputs and generalizes well to new
inputs. Both programs below satisfy the spec: (i) Concat(1st letter of 1st word,
2nd word), (ii) Concat(4th-last letter of 1st word, 2nd word). However, program
(i) clearly generalizes better: for instance, its output on “Yoshua Bengio” is “Y
Bengio” while program (ii) produces “s Bengio”.

Input Output

Yann LeCunn Y LeCunn
Hugo Larochelle H Larochelle
Tara Sainath T Sainath

Yoshua Bengio ?

which is critical for user-facing PBE scenarios.

In contrast, statistical systems do not rely on specialized deductive algorithms,

which makes their implementation and training easier. However, they lack in

two critical aspects. First, they require a lot of training data and so are often

trained using randomly generated tasks. As a result, induced programs can be

fairly unnatural and fail to generalize to real-world tasks with a small number of

examples. Second, purely statistical systems like RobustFill [5] do not guarantee

that the generated program satisfies the spec. Thus, solving the synthesis task

requires generating multiple programs with a beam search and post-hoc filtering,

which defeats real-time performance.

Neural-Guided Deductive Search Motivated by shortcomings of both the above

approaches, we propose Neural-Guided Deductive Search (NGDS), a hybrid syn-

thesis technique that brings together the desirable aspects of both methods. The

symbolic foundation of NGDS is deductive search [2] and is parameterized by an
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underlying domain-specific language (DSL) of target programs. Synthesis pro-

ceeds by recursively applying production rules of the DSL to decompose the ini-

tial synthesis problem into smaller sub-problems and further applying the same

search technique on them. Our key observation I is that most of the deduced sub-

problems do not contribute to the final best program and therefore a priori pre-

dicting the usefulness of pursuing a particular sub-problem streamlines the search

process resulting in considerable time savings. In NGDS, we use a statistical

model trained on real-world data to predict a score that corresponds to the like-

lihood of finding a generalizable program as a result of exploring a sub-problem

branch.

Our key observation II is that speeding up deductive search while retaining

its correctness or generalization requires a close integration of symbolic and statis-

tical approaches via an intelligent controller. It is based on the “branch & bound”

technique from combinatorial optimization [78]. The overall algorithm integrates

(i) deductive search, (ii) a statistical model that predicts, a priori, the generaliza-

tion score of the best program from a branch, and (iii) a controller that selects

sub-problems for further exploration based on the model’s predictions.

Since program synthesis is a sequential process wherein a sequence of deci-

sions (here, selections of DSL rules) collectively construct the final program, a

reinforcement learning setup seems more natural. However, our key observation

III is that deductive search is Markovian – it generates independent sub-problems

at every level. In other words, we can reason about a satisfying program for

the sub-problem without factoring in the bigger problem from which it was de-
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duced. This brings three benefits enabling a supervised learning formulation: (a)

a dataset of search decisions at every level over a relatively small set of PBE tasks

that contains an exponential amount of information about the DSL promoting gen-

eralization, (b) such search traces can be generated and used for offline training,

(c) we can learn separate models for different classes of sub-problems (e.g. DSL

levels or rules), with relatively simpler supervised learning tasks.

Evaluation We evaluate NGDS on the string transformation domain, building

on top of PROSE, a commercially successful deductive synthesis framework for

PBE [2]. It represents one of the most widespread and challenging applications

of PBE and has shipped in multiple mass-market tools including Microsoft Excel

and Azure ML Workbench.1 We train and validate our method on 375 scenarios

obtained from real-world customer tasks [75, 5]. Thanks to the Markovian search

properties described above, these scenarios generate a dataset of 400, 000+ inter-

mediate search decisions. NGDS produces intended programs on 68% of the sce-

narios despite using only one input-output example. In contrast, state-of-the-art

neural synthesis techniques [77, 5] learn intended programs from a single example

in only 24-36% of scenarios taking ≈ 4× more time. Moreover, NGDS matches

the accuracy of baseline PROSE while providing a speed-up of up to 12× over

challenging tasks.

Contributions First, we present a branch-and-bound optimization based con-

troller that exploits deep neural network based score predictions to select gram-

1https://microsoft.github.io/prose/impact/
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mar rules efficiently (Section 3.1.2). Second, we propose a program synthesis

algorithm that combines key traits of a symbolic and a statistical approach to

retain desirable properties like correctness, robust generalization, and real-time

performance (Section 3.1.3). Third, we evaluate NGDS against state-of-the-art

baselines on real customer tasks and show significant gains (speed-up of up to

12×) on several critical cases (Section 3.2).

3.0.1 Background

In this section, we provide a brief background on PBE and the PROSE framework,

using established formalism from the programming languages community.

Domain-Specific Language A program synthesis problem is defined over a

domain-specific language (DSL). A DSL is a restricted programming language

that is suitable for expressing tasks in a given domain, but small enough to restrict

a search space for program synthesis. For instance, typical real-life DSLs with

applications in textual data transformations [75] often include conditionals, lim-

ited forms of loops, and domain-specific operators such as string concatenation,

regular expressions, and date/time formatting. DSLs for tree transformations such

as code refactoring [79] and data extraction [80] include list/data-type processing

operators such as Map and Filter, as well as domain-specific matching operators.

Formally, a DSL L is specified as a context-free grammar, with each non-terminal

symbol N defined by a set of productions. The right-hand side of each produc-

tion is an application of some operator F (N1, . . . , Nk) to some symbols of L. All
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symbols and operators are strongly typed. Figure 3.2 shows a subset of the Flash

Fill DSL that we use as a running example in this paper.

Inductive Program Synthesis The task of inductive program synthesis is char-

acterized by a spec. A spec ϕ is a set of m input-output constraints {σi  ψi}mi=1,

where:

• σ, an input state is a mapping of free variables of the desired program P to

some correspondingly typed values. At the top level of L, a program (and

its expected input state) has only one free variable – the input variable of the

DSL (e.g., inputs in Figure 3.2). Additional local variables are introduced

inside L with a let construct.

• ψ is an output constraint on the execution result of the desired program

P (σi). At the top level of L, when provided by the user, ψ is usually the

output example – precisely the expected result of P (σi). However, other

intermediate constraints arise during the synthesis process. For instance, ψ

may be a disjunction of multiple allowed outputs.

The overall goal of program synthesis is thus: given a spec ϕ, find a program

P in the underlying DSL L that satisfies ϕ, i.e., its outputs P (σi) satisfy all the

corresponding constraints ψi.

Example 1 Consider the task of formatting a phone number, characterized by

the spec ϕ = {inputs : [“(612) 8729128”]}  “612-872-9128”. It has

a single input-output example, with an input state σ containing a single variable
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inputs and its value which is a list with a single input string. The output constraint

is simply the desired program result.

The program the user is most likely looking for is the one that extracts (a)

the part of the input enclosed in the first pair of parentheses, (b) the 7th to 4th

characters from the end, and (c) the last 4 characters, and then concatenates all

three parts using hyphens. In our DSL, this corresponds to:

Concat
(
SubStr0(RegexPosition(x, 〈“(”, ε〉 , 0),

RegexPosition(x, 〈ε,“)”〉 , 0)), ConstStr(“-”),

SubStr0(AbsolutePosition(x,−8),AbsolutePosition(x,−5)),

ConstStr(“-”),

SubStr0(AbsolutePosition(x,−5),AbsolutePosition(x,−1))
)

where ε is an empty regex, SubStr0(pos1, pos2) is an abbreviation for

“let x = std.Kth(inputs, 0) in Substring(x, 〈pos1, pos2〉)”, and 〈·〉 is an ab-

breviation for std.Pair.

However, many other programs in the DSL also satisfy ϕ. For instance, all

occurrences of “8” in the output can be produced via a subprogram that simply

extracts the last character. Such a program overfits to ϕ and is bound to fail for

other inputs where the last character and the 4th one differ.

As Example 1 shows, typical real-life problems are severely underspecified. A

DSL like FlashFill may contain up to 1020 programs that satisfy a given spec of 1-3
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input-output examples [2]. Therefore, the main challenge lies in finding a program

that not only satisfies the provided input-output examples but also generalizes to

unseen inputs. Thus, the synthesis process usually interleaves search and ranking:

the search phase finds a set of spec-satisfying programs in the DSL, from which

the ranking phase selects top programs ordered using a domain-specific ranking

function h : L×~Σ→ R where Σ is the set of all input states. The ranking function

takes as input a candidate program P ∈ L and a set of input states ~σ ∈ ~Σ (usually

~σ = inputs in the given spec + any available unlabeled inputs), and produces a

score for P ’s generalization.

The implementation of h expresses a subtle balance between program gen-

erality, complexity, and behavior on available inputs. For instance, in FlashFill

h penalizes overly specific regexes, prefers programs that produce fewer empty

outputs, and prioritizes lower Kolmogorov complexity, among other features. In

modern PBE systems like PROSE, h is usually learned in a data-driven manner

from customer tasks [81, 82]. While designing and learning such a ranking is an

interesting problem in itself, in this work we assume a black-box access to h. Fi-

nally, the problem of inductive program synthesis can be summarized as follows:

Problem 1 Given a DSL L, a ranking function h, a spec ϕ = {σi  ψi}mi=1,
optionally a set of unlabeled inputs ~σu, and a target number of programs K, let
~σ = ~σu ∪ {σi}mi=1. The goal of inductive program synthesis is to find a program
set S = {P1, . . . , PK} ⊂ L such that (a) every program in S satisfies ϕ, and (b)
the programs in S generalize best: h(Pi, ~σ) ≥ h(P,~σ) for any other P ∈ L that
satisfies ϕ.
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// Nonterminals
@start string transform := atom | Concat(atom, transform);
string atom := ConstStr(s)

| let string x = std.Kth(inputs, k) in
Substring(x, pp);

Tuple<int, int> pp := std.Pair(pos, pos) | RegexOccurrence(x,
r, k);

int pos := AbsolutePosition(x, k) | RegexPosition(x, std.
Pair(r, r), k);

// Terminals
@input string[] inputs; string s; int k; Regex

r;

Figure 3.2: A subset of the FlashFill DSL [75], used as a running example in
this paper. Every program takes as input a list of strings inputs, and returns
an output string, a concatenation of atoms. Each atom is either a constant or
a substring of one of the inputs (x), extracted using some position logic. The
RegexOccurrence position logic finds kth occurrence of a regex r in x and returns
its boundaries. Alternatively, start and end positions can be selected independently
either as absolute indices in x from left or right (AbsolutePosition) or as the kth

occurrence of a pair of regexes surrounding the position (RegexPosition). See [75]
for an in-depth DSL description.
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Search Strategy Deductive search strategy for program synthesis, employed by

PROSE explores the grammar of L top-down – iteratively unrolling the produc-

tions into partial programs starting from the root symbol. Following the divide-

and-conquer paradigm, at each step it reduces its synthesis problem to smaller

subproblems defined over the parameters of the current production. Formally,

given a spec ϕ and a symbol N , PROSE computes the set Learn(N,ϕ) of top

programs w.r.t. h using two guiding principles:

[noitemsep,topsep=0pt, wide=0pt, leftmargin=]If N is defined through n

productions N := F1(. . . ) | . . . | Fn(. . . ), PROSE finds a ϕ-satisfying

program set for every Fi, and unites the results, i.e., Learn(N,ϕ)

= ∪i Learn(Fi(. . . ), ϕ). For a given production N := F (N1, . . . , Nk),

PROSE spawns off k smaller synthesis problems Learn(Nj, ϕj), 1 ≤ j ≤ k

wherein PROSE deduces necessary and sufficient specs ϕj for eachNj such

that every program of type F (P1, . . . , Pk), where Pj ∈ Learn(Nj, ϕj), sat-

isfies ϕ. The deduction logic (called a witness function) is domain-specific

for each operator F . PROSE then again recursively solves each subproblem

and unites a cross-product of the results.

1.2. Example 2 Consider a spec ϕ = {“Yann”  “Y.L”} on a transform pro-

gram. Via the first production transform := atom, the only ϕ-satisfying pro-

gram is ConstStr(“Y.L”). The second production on the same level is

Concat(atom, transform). A necessary & sufficient spec on the atom sub-

program is that it should produce some prefix of the output string. Thus, the
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witness function for the Concat operator produces a disjunctive spec

ϕa = {“Yann”  “Y” ∨ “Y.”}. Each of these disjuncts, in turn, induces

a corresponding necessary and sufficient suffix spec on the second parameter:

ϕt1 = {“Yann”  “.L”}, and ϕt2 = {“Yann”  “L”}, respectively. The

disjuncts in ϕa will be recursively satisfied by different program sets: “Y.” can

only be produced via an atom path with a ConstStr program, whereas “Y” can

also be extracted from the input using many Substring logics (their generalization

capabilities vary). Figure 3.3 shows the resulting search DAG.

transform
“Y.L”

Concat(. . . )
“Y.L”

atom
“Y.L”

atom
“Y” ∨ “Y.”

transform
“L”

atom
“L”

transform
“.L”

atom
“.L”

Concat(. . . )
“.L”

atom
“.”

ConstStr(s)
“Y.L”

. . . . . . . . . . . .

ConstStr(s)
“Y” ∨ “Y.”

let x = . . .
“Y” ∨ “Y.”

...
Substring(. . . )

“Y”

pp
(0, 1)

. . .

Figure 3.3: A portion of the search DAG from Example 2. Only the output parts of
the respective specs are shown in each node, their common input state is a single
string “Yann”. Dashed arrows show recursive Learn calls on a corresponding
DSL symbol.

Notice that the above mentioned principles create logical non-determinism due to

which we might need to explore multiple alternatives in a search tree. As such

non-determinism arises at every level of the DSL with potentially any operator,

the search tree (and the resulting search process) is exponential in size. While all

the branches of the tree by construction produce programs that satisfy the given

spec, most of the branches do not contribute to the overall top-ranked general-
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izable program. During deductive search, PROSE has limited information about

the programs potentially produced from each branch, and cannot estimate their

quality, thus exploring the entire tree unnecessarily. Our main contribution is a

neuralguided search algorithm that predicts the best program scores from each

branch, and allows PROSE to omit branches that are unlikely to produce the de-

sired program a priori.

3.0.2 Related Work

Neural Program Induction systems synthesize a program by training a new neu-

ral network model to map the example inputs to example outputs [83, 84, 85].

Examples include Neural Turing Machines [83] that can learn simple programs

like copying/sorting, work of [86] that can perform more complex computations

like binary multiplications, and more recent work of [87] that can incorporate re-

cursions. While we are interested in ultimately producing the right output, all

these models need to be re-trained for a given problem type, thus making them

unsuitable for real-life synthesis of different programs with few examples.

Neural Program Synthesis systems synthesize a program in a given L with

a pre-learned neural network. Seminal works of [88] and [76] proposed first pro-

ducing a high-level sketch of the program using procedural knowledge, and then

synthesizing the program by combining the sketch with a neural or enumerative

synthesis engine. In contrast, R3NN [89] and RobustFill [5] systems synthesize

the program end-to-end using a neural network; [5] show that RobustFill in fact

outperforms R3NN. However, RobustFill does not guarantee generation of spec-
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satisfying programs and often requires more than one example to find the intended

program. In fact, our empirical evaluation (Section 3.2) shows that our hybrid

synthesis approach significantly outperforms the purely statistical approach of Ro-

bustFill.

DeepCoder [77] is also a hybrid synthesis system that guides enumerative pro-

gram synthesis by prioritizing DSL operators according to a spec-driven likeli-

hood distribution on the same. However, NGDS differs from DeepCoder in two

important ways: (a) it guides the search process at each recursive level in a top-

down goal-oriented enumeration and thus reshapes the search tree, (b) it is trained

on real-world data instead of random programs, thus achieving better generaliza-

tion.

Symbolic Program Synthesis has been studied extensively in the PL com-

munity [90, 91], dating back as far as 1960s [74]. Most approaches employ ei-

ther bottom-up enumerative search [92], constraint solving [93], or inductive logic

programming [94], and thus scale poorly to real-world industrial applications (e.g.

data wrangling applications). In this work, we build upon deductive search, first

studied for synthesis by [95], and primarily used for program synthesis from for-

mal logical specifications [96, 97]. [75] and later [2] used it to build PROSE,

a commercially successful domain-agnostic system for PBE. While its deductive

search guarantees program correctness and also good generalization via an ac-

curate ranking function, it still takes several seconds on complex tasks. Thus,

speeding up deductive search requires considerable engineering to develop man-

ual heuristics. NGDS instead integrates neural-driven predictions at each level of
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deductive search to alleviate this drawback. Work of [98] represents the closest

work with a similar technique but their work is applied to an automated theorem

prover, and hence need not care about generalization. In contrast, NGDS guides

the search toward generalizable programs while relying on the underlying sym-

bolic engine to generate correct programs.

3.1 Synthesis Algorithm

Consider an arbitrary branching moment in the top-down search strategy of PROSE.

For example, let N be a nonterminal symbol in L, defined through a set of pro-

ductions

N := F1(. . . ) | . . . | Fn(. . . ), and let ϕ be a spec on N , constructed earlier dur-

ing the recursive descent over L. A conservative way to select the top k programs

rooted at N (as defined by the ranking function h), i.e., to compute Learn(N,ϕ),

is to learn the top k programs of kind Fi(. . . ) for all i ∈ [k] and then select the

top k programs overall from the union of program sets learned for each produc-

tion. Naturally, exploring all the branches for each nonterminal in the search tree

is computationally expensive.

In this work, we propose a data-driven method to select an appropriate pro-

duction rule N := Fi(N1, . . . , Nk) that would most likely lead to a top-ranked

program. To this end, we use the current spec ϕ to determine the “optimal” rule.

Now, it might seem unintuitive that even without exploring a production rule and

finding the best program in the corresponding program set, we can a priori de-

termine optimality of that rule. However, we argue that by understanding ϕ and
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its relationship with the ranking function h, we can predict the intended branch in

many real-life scenarios.

Example 3 Consider a specϕ = {“alice” “alice@iclr.org”, “bob”

 “bob@iclr.org”}. While learning a program in L given by Figure 3.2 that

satisfies ϕ, it is clear right at the beginning of the search procedure that the rule

transform := atom does not apply. This is because any programs derived from

transform := atom can either extract a substring from the input or return a con-

stant string, both of which fail to produce the desired output. Hence, we should

only consider transform := Concat(. . . ), thus significantly reducing the search

space.

Similarly, consider another spec ϕ = {“alice smith” 

“alice”, “bob jones”  “bob”}. In this case, the output appears to be

a substring of input, thus selecting transform := atom at the beginning of the

search procedure is a better option than transform := Concat(. . . ).

However, many such decisions are more subtle and depend on the ranking

function h itself. For example, consider a spec ϕ = {“alice liddell”  

“al”, “bob ong” “bo”}. Now, both transform := atom and transform :=

Concat(. . . ) may lead to viable programs because the output can be constructed

using the first two letters of the input (i.e. a substring atom) or by concatenating

the first letters of each word. Hence, the branch that produces the best program

is ultimately determined by the ranking function h since both branches generate

valid programs.
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Example 3 shows that to design a data-driven search strategy for branch se-

lection, we need to learn the subtle relationship between ϕ, h, and the candidate

branch. Below, we provide one such model.

3.1.1 Predicting the Generalization Score

As mentioned above, our goal is to predict one or more production rules that for

a given spec ϕ will lead to a top-ranked program (as ranked a posteriori by h).

Formally, given black-box access to h, we want to learn a function f such that,

f(Γ, ϕ) ≈ max
P ∈S(Γ, ϕ)

h(P, ϕ),

where Γ is a production rule in L, and S(Γ, ϕ) is a program set of all DSL pro-

grams derived from the rule Γ that satisfy ϕ. In other words, we want to predict

the score of the top-ranked ϕ-satisfying program that is synthesized by unrolling

the rule Γ . We assume that the symbolic search of PROSE handles the construc-

tion of S(Γ, ϕ) and ensures that programs in it satisfy ϕ by construction. The goal

of f is to optimize the score of a program derived from Γ assuming this program

is valid. If no program derived from Γ can satisfy ϕ, f should return −∞. Note

that, drawing upon observations mentioned in Section 3.3.1, we have cast the pro-

duction selection problem as a supervised learning problem, thus simplifying the

learning task as opposed to end-to-end reinforcement learning solution.

We have evaluated two models for learning f . The loss function for the pre-

71



www.manaraa.com

LSTM for in-
put encoding

LSTM for out-
put encoding

Char Embedding

Input state σ

Char Embedding

Output example(s) ψ

Embedding

Production rule Γ Two
FC
lay-
ers

Pr
ed

ic
te

d
sc

or
e

Figure 3.4: LSTM-based model for predicting the score of a candidate production
for a given spec ϕ.

diction is given by:

L(f ;Γ, ϕ) =
(
f(Γ, ϕ)− max

P ∈S(Γ, ϕ)
h(P, ϕ)

)2
.

Figure 3.4 shows a common structure of both models we have evaluated. Both are

based on a standard multi-layer LSTM architecture hochreiter97 and involve (a)

embedding the given spec ϕ, (b) encoding the given production rule Γ , and (c)

a feed-forward network to output a score f(Γ, ϕ). One model attends over input

when it encodes the output, whereas another does not.

3.1.2 Controller for Branch Selection

A sc:re model f alone is insufficient to perfectly predict the branches that should

be explored at every level. Consider again a branching decision moment N :=

F1(. . . ) | . . . | Fn(. . . ) in a search process for top k programs satisfying a spec ϕ.

One naı̈ve approach to using the predictions of f is to always follow the highest-

scored production rule argmaxi f(Fi, ϕ). However, this means that any single
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incorrect decision on the path from the DSL root to the desired program will elim-

inate that program from the learned program set. If our search algorithm fails

to produce the desired program by committing to a suboptimal branch anytime

during the search process, then the user may never discover that such a program

exists unless they supply additional input-output example.

Thus, a branch selection strategy based on the predictions of f must balance

a trade-off of performance and generalization. Selecting too few branches (a sin-

gle best branch in the extreme case) risks committing to an incorrect path early

in the search process and producing a suboptimal program or no program at all.

Selecting too many branches (all n branches in the extreme case) is no differ-

ent from baseline PROSE and fails to exploit the predictions of f to improve its

performance.

Formally, a controller for branch selection at a symbol N := F1(. . . ) |

. . . | Fn(. . . ) targeting k best programs must (a) predict the expected score of the

best program from each program set: si = f(Fi, ϕ) ∀ 1 ≤ i ≤ n, and (b) use the

predicted scores si to narrow down the set of productions F1, . . . , Fn to explore

and to obtain the overall result by selecting a subset of generated programs. In

this work, we propose and evaluate two controllers. Their pseudocode is shown

in Figure 3.5.

Threshold-based: Fix a score threshold θ, and explore those branches whose

predicted score differs by at most θ from the maximum predicted score. This is

a simple extension of the naı̈ve “argmax” controller discussed earlier that also

explores any branches that are predicted “approximately as good as the best one”.
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function THRESHOLD-
BASED(ϕ, h, k, s1, . . . , sn)
1: Result set S∗ ← []
2: i∗ ← argmaxi si forall 1 ≤ i ≤
n do

|si − si∗ | ≤ θ
// Recursive search

3: S∗ += LEARN(Fi, ϕ, k)
4:

5:

6: return the top k programs of S
w.r.t. h

function
BNBBASED(ϕ, h, k, s1, . . . , sn)
1: Result set S∗ ← []; Program tar-
get k′ ← k
2: Reorder Fi in the descending order
of si forall 1 ≤ i ≤ n do
3:

Si ← LEARN(Fi, ϕ, k
′) // Recur-

sive search
4: j ←
BINARYSEARCH(si+1,Map(h,Si))
5: S∗ = S∗i ∪ Si[0..j]; k′ ← k′ − j if
k′ ≤ 0 then

break
6:

7:

8: return S∗

Figure 3.5: The controllers for guiding the search process to construct a most gen-
eralizable ϕ-satisfying program set S of size k given the f -predicted best scores
s1, . . . , sn of the productions F1, . . . , Fn.

When θ = 0, it reduces to the “argmax” one.

Branch & Bound: This controller is based on the “branch & bound” tech-

nique in combinatorial optimization clausenbranchnbound.AssumethebranchesFi

are ordered in the descending order of their respective predicted scores si. After

recursive learning produces its program set Si, the controller proceeds to the next

branch only if si+1 exceeds the score of the worst program in Si. Moreover, it

reduces the target number of programs to be learned, using si+1 as a lower bound

on the scores of the programs in Si. That is, rather than relying blindly on the pre-

dicted scores, the controller guides the remaining search process by accounting

for the actual synthesized programs as well.
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Given: DSL L, ranking function h, controller C from Figure 3.5
(THRESHOLDBASED or BNBBASED), symbolic search algorithm
LEARN(Production rule Γ , spec ϕ, target k) as in PROSE [2, Figure
7] with all recursive calls to LEARN replaced with LEARNNGDS

function LEARNNGDS(Symbol N := F1(. . . ) | . . . | Fn(. . . ), spec ϕ, target
number of programs k) if n = 1 then

return
LEARN(F1, ϕ, k)

1:

2: Pick a score model f based on depth(N,L)
3: s1, . . . , sn ← f(F1, ϕ), . . . , f(Fn, ϕ)
4: return C(ϕ, h, k, s1, . . . , sn)

Figure 3.6: Neural-guided deductive search over L, parameterized with a branch
selection controller C.

3.1.3 Neural-Guided Deductive Search

We now combine the above components to present our unified algorithm for pro-

gram synthesis. It builds upon the deductive search of the PROSE system, which

uses symbolic PL insights in the form of witness functions to construct and narrow

down the search space, and a ranking function h to pick the most generalizable

program from the found set of spec-satisfying ones. However, it significantly

speeds up the search process by guiding it a priori at each branching decision

using the learned score model f and a branch selection controller, outlined in

Sections 3.1.1 and 3.1.2. The resulting neural-guided deductive search (NGDS)

keeps the symbolic insights that construct the search tree ensuring correctness of

the found programs, but explores only those branches of this tree that are likely to

produce the user-intended generalizable program, thus eliminating unproductive

search time.

A key idea in NGDS is that the score prediction model f does not have to be
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Table 3.1: Accuracy and average speed-up of NGDS vs. baseline methods. Ac-
curacies are computed on a test set of 73 tasks. Speed-up of a method is the
geometric mean of its per-task speed-up (ratio of synthesis time of PROSE and of
the method) when restricted to a subset of tasks with PROSE’s synthesis time is
≥ 0.5 sec.

Metric PROSE DC1 DC2 DC3 RF1 RF2 RF3 NGDS

Accuracy (% of 73) 67.12 35.81 47.38 62.92 24.53 39.72 56.41 68.49
Speed-up (× PROSE) 1.00 1.82 1.53 1.42 0.25 0.27 0.30 1.67

the same for all decisions in the search process. It is possible to train separate

models for different DSL levels, symbols, or even productions. This allows the

model to use different features of the input-output spec for evaluating the fitness

of different productions, and also leads to much simpler supervised learning prob-

lems. In principle, priming one unified model with the current depth, symbol, and

production (as in Figure 3.4) achieves the same effect with enough training, but

explicitly separating training by level makes supervised learning

Figure 3.6 shows the pseudocode of NGDS. It builds upon the deductive search

of PROSE, but augments every branching decision on a symbol with some branch

selection controller from Section 3.1.2. We present a comprehensive evaluation

of different strategies in Section 3.2.

3.2 Experiments: Neural-Guided Deductive Search

In this section, we evaluate our NGDS algorithm over the string manipulation

domain with a DSL given by Figure 3.2; see Figure 3.1 for an example task. We

evaluate NGDS, its ablations, and baseline techniques on two key metrics: (a)

generalization accuracy on unseen inputs, (b) synthesis time.

76



www.manaraa.com

Dataset. We use a dataset of 375 tasks collected from real-world customer

string manipulation problems, split into 65% training, 15% validation, and 20%

test data. Some of the common applications found in our dataset include date/time

formatting, manipulating addresses, modifying names, automatically generating

email IDs, etc. Each task contains about 10 inputs, of which only one is provided

as the spec to the synthesis system, mimicking industrial applications. The re-

maining unseen examples are used to evaluate generalization performance of the

synthesized programs. After running synthesis of top-1 programs with PROSE on

all training tasks, we have collected a dataset of ≈ 400,000 intermediate search

decisions, i.e. triples 〈production Γ, spec ϕ, a posteriori best score h(P, ϕ)〉.

Baselines. We compare our method against two state-of-the-art neural syn-

thesis algorithms: RobustFill [5] and DeepCoder [77]. For RobustFill, we use the

best-performing Attention-C model and use their recommended DP-Beam Search

with a beam size of 100 as it seems to perform the best; Table ?? in Appendix ??

presents results with different beam sizes. As in the original work, we select the

top-1 program ranked according to the generated log-likelihood. DeepCoder is a

generic framework that allows their neural predictions to be combined with any

program synthesis method. So, for fair comparison, we combine DeepCoder’s

predictions with PROSE. We train DeepCoder model to predict a distribution over

L’s operators and as proposed, use it to guide PROSE synthesis. Since both Ro-

bustFill and DeepCoder are trained on randomly sampled programs and are not

optimized for generalization in the real-world, we include their variants trained

with 2 or 3 examples (denoted RFm and DCm) for fairness, although m = 1 ex-
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ample is the most important scenario in real-life industrial usage.

Ablations. As mentioned in section 3.1, our novel usage of score predictors

to guide the search enables us to have multiple prediction models and controllers

at various stages of the synthesis process. Here we investigate ablations of our

approach with models that specialize in predictions for individual levels in the

search process. The model T1 is trained for symbol transform (Figure 3.2) when

expanded in the first level. Similarly, PP , POS refer to models trained for the

pp and pos symbol, respectively. Finally, we train all our LSTM-based models

with CNTK [99] using Adam [71] with a learning rate of 10−2 and a batch size of

32, using early stopping on the validation loss to select the best performing model

(thus, 100-600 epochs).

We also evaluate three controllers: threshold-based (Thr) and branch-and-

bound (BB) controllers given in Figure 3.5, and a combination of them – branch-

and-bound with a 0.2 threshold predecessor (BB0.2). In Tables 3.1 and 3.2 we

denote different model combinations as NGDS(f , C) where f is a symbol-based

model and C is a controller. The final algorithm selection depends on its accuracy-

performance trade-off. In Table 3.1, we use NGDS(T1 + POS, BB), the best

performing algorithm on the test set, although NGDS(T1, BB) performs slightly

better on the validation set.

Evaluation Metrics. Generalization accuracy is the percentage of test tasks

for which the generated program satisfies all unseen inputs in the task. Synthesis

time is measured as the wall-clock time taken by a synthesis method to find the

correct program, median over 5 runs. We run all the methods on the same machine
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Table 3.2: Accuracies, mean speed-ups, and % of branches taken for different
ablations of NGDS.

Method Validation Test % of branches
Accuracy Speed-up Accuracy Speed-up

PROSE 70.21 1 67.12 1 100.00
NGDS(T1, Thr) 59.57 1.15 67.12 1.27 62.72
NGDS(T1, BB) 63.83 1.58 68.49 1.22 51.78
NGDS(T1, BB0.2) 61.70 1.03 67.12 1.22 63.16
NGDS(T1 + PP , Thr) 59.57 0.76 67.12 0.97 56.41
NGDS(T1 + PP , BB) 61.70 1.05 72.60 0.89 50.22
NGDS(T1 + PP , BB0.2) 61.70 0.72 67.12 0.86 56.43
NGDS(T1 + POS, Thr) 61.70 1.19 67.12 1.93 55.63
NGDS(T1 + POS, BB) 63.83 1.13 68.49 1.67 50.44
NGDS(T1 + POS, BB0.2) 63.83 1.19 67.12 1.73 55.73

with 2.3 GHz Intel Xeon processor, 64GB of RAM, and Windows Server 2016.

Results. Table 3.1 presents generalization accuracy as well as synthesis time

speed-up of various methods w.r.t. PROSE. As we strive to provide real-time syn-

thesis, we only compare the times for tasks which require PROSE more than 0.5

sec. Note that, with one example, NGDS and PROSE are significantly more ac-

curate than RobustFill and DeepCoder. This is natural as those methods are not

trained to optimize generalization, but it also highlights advantage of a close in-

tegration with a symbolic system (PROSE) that incorporates deep domain knowl-

edge. Moreover, on an average, our method saves more than 50% of synthesis

time over PROSE. While DeepCoder with one example speeds up the synthesis

even more, it does so at the expense of accuracy, eliminating branches with correct

programs in 65% of tasks.

Table 3.2 presents speed-up obtained by variations of our models and con-

trollers. In addition to generalization accuracy and synthesis speed-up, we also
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show a fraction of branches that were selected for exploration by the controller.

Our method obtains impressive speed-up of > 1.5× in 22 cases. One such test

case where we obtain 12× speedup is a simple extraction case which is fairly com-

mon in Web mining: {“alpha,beta,charlie,delta”  “alpha”}. For

such cases, our model determine transform := atom to be the correct branch

(that leads to the final Substring based program) and hence saves time required

to explore the entire Concat operator which is expensive. Another interesting test

case where we observe 2.7× speed-up is: {“457 124th St S, Seattle,”

WA98111  “Seattle-WA”}. This test case involves learning a Concat op-

erator initially followed by Substring and RegexPosition operator. The Appendix

includes a comprehensive table of NGDS performance on all the validation and

test tasks.

All the models in Table 3.2 run without attention. As measured by score flip

accuracies (i.e. percentage of correct orderings of branch scores on the same

level), attention-based models perform best, achieving 99.57/90.4/96.4% accu-

racy on train/validation/test, respectively (as compared to 96.09/91.24/91.12%

for non-attention models). However, an attention-based model is significantly

more computationally expensive at prediction time. Evaluating it dominates the

synthesis time and eliminates any potential speed-ups. Thus, we decided to forgo

attention in initial NGDS and investigate model compression/binarization in fu-

ture work.

Error Analysis. As shown by the detailed results in the Appendix, NGDS

is slower than PROSE on some tasks. This occurs when the predictions do not
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satisfy the constraints of the controller i.e. all the predicted scores are within the

threshold or they violate the actual scores during B&B exploration. This leads to

NGDS evaluating the LSTM for branches that were previously pruned. This is

especially harmful when branches pruned out at the very beginning of the search

need to be reconsidered – as it could lead to evaluating the neural network many

times. While a single evaluation of the network is quick, a search tree involves

many evaluations, and when performance of PROSE is already < 1 s, this results

in considerable relative slowdown. We provide two examples to illustrate both the

failure modes:

(a) “41.7114830017,-91.41233825683,41.60762786865,”

“-91.63739013671”  “41.7114830017”. The intended program is a

simple substring extraction. However, at depth 1, the predicted score of Concat

is much higher than the predicted score of Atom, and thus NGDS explores only

the Concat branch. The found Concat program is incorrect because it uses ab-

solute position indexes and does not generalize to other similar extraction tasks.

We found this scenario common with punctuation in the output string, which the

model considers a strong signal for Concat.

(b) “type size = 36: Bartok.Analysis.CallGraphNode”

“type size = 32: Bartok.Analysis.CallGraphNode”

“CallGraphNode” “36->32”. In this case, NGDS correctly explores only

the Concat branch, but the slowdown happens at the pos symbol. There are many

different logics to extract the “36” and “32” substrings. NGDS explores the

RelativePosition branch first, but the score of the resulting program is less then

81



www.manaraa.com

the prediction for RegexPositionRelative. Thus, the B&B controller explores both

branches anyway, which leads to a relative slowdown caused by the network eval-

uation time.

3.3 Programming Puzzles: Learning Heuristics with Reinforce

Programming Puzzles are a test-bench for evaluating AI reasoning systems and

have the following desirable properties.

• Unbiased: Avoid dependence on human priors, such as language, or spatio-

temporal biases.

• Objective: A candidate solution has to be unambiguously verified within

some pre-determined time-limit. In particular, the correctness of the solu-

tion should be determined automatically, i.e. without requiring knowledge

of English or consulting an answer key.

• Challenging: Capable of representing problems that are “hard” for a wide-

variety of solvers.

• Diverse: Capture a rich range of programming problems from easy to hard

ones.

In this section, we show that generating programming puzzles can be cast as a

program synthesis problem and further an NGDS-style synthesis process can be

setup that leverages the final outcome in order to guide the search (as opposed to

using human-engineered scores).
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def f1(n: int, prefix=123456789): # find an integer n whose square
begins with 123456789
return str(n*n).startswith(str(prefix))

def f2(S: Set[int], n=11010010): # find a set S of powers of 10 summing
to 11010010
return sum({10**i for i in S}) == n

def f3(s: str): # find a string s with 1,000 As but no two consecutive As
return s.count("A")==1000 and s.count("AA")==0

def f4(x: List[Boolean]): # solve a classic Boolean SAT CNF formula
return (x[0] or x[1]) and (not x[1] or not x[2])

def f5(m: int, n=10987654321): # find a nontrivial integer factor of
10987654321
return 1 < m < n and n % m == 0

Figure 3.7: Sample programming puzzles with valid answers n = 111111111
(Python: int(”1”*9)), S = {1, 4, 6, 7}, s = a concatenation of 1000 copies of
”AB” (Python: s=”AB”*1000), x =[True,True, False], and m = 7. The problem
statement (in green) is provided for the reader’s clarity and is not given to a puzzle
solver. PPs are capable of representing a wide-variety of problems while covering
the spectrum of easy to difficult (and even unsolvable) problems.

3.3.1 Programming Puzzles

Programming Puzzles. Programming Puzzles (PPs) are a new domain of rea-

soning problems that satisfy the above requirements for a suitable test-bench. PPs

are defined by the source code of a function f provided in some fixed program-

ming language (e.g. Python) 2. The goal of a solver is to find a satisfying solution

x s.t. f(x) returns True. PPs are unbiased by construction as all the information

required to find a solution is contained in the source code of the defining func-

2Note that a formal langauge is more precise than natural language and therefore, the least
“unbiased” one can be while still communicating the problem to the solver.
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tion f . Importantly, such puzzles are objective – a candidate solution can easily

be evaluated for correctness. Further, as fig. 3.7 illustrates, PPs can capture a

diverse set of reasoning problems – ranging from easy questions such as list re-

versal to solving (x + 1)x+1 == 100100 for x to challenging problems such as

factoring or subset-sum. However, note that not all programming problems can

be elegantly defined as PPs. In some problems, writing the puzzle is as hard as

solving the problem, e.g. long addition of two numbers. As PPs are unbiased by

construction, problems involving human priors are also hard to represent – e.g. al-

phabetizing a list of names by last names, where language rules determine whether

“Mary De Leon” is sorted under “D” or “L”.

3.3.2 Puzzle Generation as a Zero-Sum Game

We first present puzzle generation in abstract terms before explaining particular

instantiations of it.

Setup. A programming puzzle (PP) p ∈ computes the Boolean function p :→

{>,⊥} on some set of solutions . As depicted in fig. 3.7, the puzzle itself is

represented in a fixed programming language (here Python) and the solution set

can be integers, floating point numbers, strings, etc. Given a set of programming

puzzles 3, our goal is to find a distribution over a diverse set of hard PPs for a

given solver S ∈. Specifically, a puzzle p is said to be hard for a solver S if

p(S(p)) = ⊥ and easy otherwise. Further,the set captures the resource constraints

on solvers (e.g. our experiments have a time budget B by wrapping each solver in
3This set can be arbitrarily large; in our case, this is the set of all puzzles that can be expressed

by a given grammar.
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an appropriate timeout). Similarly, the set captures restrictions on puzzles such

as their length or any other restrictions of interest such as solvability.

Recall that our goal is to find a distribution over hard puzzles in a given set of

PPs . We set this up as a two-player zero-sum game between a puzzle Generator

and a learning Solver. The generator chooses an arbitrary distribution D ∈ ∆()

over , where ∆(·) denotes the set of probability distributions over any set. Anal-

ogously, the solver which is adaptive chooses S ∈ in each round. For instance,

the solver can be parametrized by a neural network resulting in a set of solvers

obtained by different values of the network’s parameters.

Objective of Puzzle Generator. The payoff to the Generator is v(D,S) =p∼D

[r(p, S,D)], where, r is a reward function and D(p) is the probability of generat-

ing puzzle p:

r(p, S,D) =


λ log 1

D(p)
+ (1− λ) if p(S(p)) 6= >

0 otherwise

The reward is parameterized by λ ∈ [0, 1] which offers a trade-off: at λ = 0, any

hard puzzle earns the Generator a reward of 1, while at λ = 1 the reward is the ex-

pected negative log-likelihood over hard puzzles. This reward function may seem

peculiar at first since it depends not only on puzzle’s hardness but also on its prob-

ability of being generated. At λ = 0 the reward does not account for the diversity

of the distribution of puzzles – against any solver S a generator could maximize

its payoff with a distribution that that has support on a single hard puzzle p ∈. To
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nudge the generator towards producing both hard and diverse puzzles, the reward

additionally depends on the distribution D chosen by the generator. As one varies

λ from 0 to 1, one expects the fraction of hard puzzles generated to decrease but

the entropy of the hard puzzles to increase, indicating increased diversity among

the generated hard puzzles. Importantly, observe that we do not consider entropy

among solved puzzles; otherwise the generator can choose a distribution D that

also values easy puzzles to trivially increase diversity.

Static solver. First, consider a fixed Solver S, i.e., the “learning” Solver

does not adapt to the generator and instead always plays S. This setting mod-

els any fixed strategy to solve puzzles – e.g. SAT solvers, Sympy4, etc. Let

HS = {p ∈ | p(S(p)) 6= >
}

denote the set of puzzles that are hard for the given

solver S. It is not difficult to see that if the Generator only generates hard prob-

lems, support(D) ⊆ HS giving the generator a pay-off, v(D,S) = 1−λ+λH(D),

where H(D) is the entropy of distribution D. For any λ ∈ (0, 1] and any fixed

solver S with |HS| ≥ 3 hard puzzles, the uniform distribution UHS over HS

uniquely maximizes the Generator’s payoff v(UHS , S) = 1 − λ + λ log2 |HS|.

We provide a proof of this lemma in the Appendix. However, in practice the Gen-

erator may not find this uniform distribution but |HS| ≥ 2v(D,S) remains a lower

bound for any distribution D chosen by the generator.

Learning solver. Now, consider an adaptive solver that can tailor its choice

of S ∈ by say, adjusting its parameters. Based on the theory of zero-sum games

myerson2013game, the game has a unique “value” that can be achieved by possi-

4https://www.sympy.org
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Algorithm 3 The Troublemaker algorithm for finding parameters for the generator
distribution. If a learning solver cannot accommodate weights, subsampling can
be used to simulate weights.
Input: sample size n, number of steps N , step size η, a sampling function for any

givenDθ, a differentiable function that computes likelihood of puzzles p ∈
under Dθ and either: (a) fixed solver S or, (b) Learning Solver that maps
a weighted set of puzzles to solver S.

4 Choose θ1 ∈ Θ for i← 1 to N do
5 Sample n puzzles {p1

i , p
2
i , . . . , p

n
i } independently according to Dθi if S is a

fixed solver then Si ← S;
6 else Si ← output of Learning Solver that takes as input puzzles {pji}nj=1 with

weights wij = 1− λ− λ logDθi(pij);
7 HSi ← set of sampled puzzles hard for Si θi+1 ← θi + η

n

∑
p∈HSi

(
1− 2λ−

λ logDθi(p)
)
∇θ logDθi(p)

8 return generator parameters θN

bly different optimal “mixed strategies” which are probability distributions them-

selves. In the puzzle-generation game, mixed strategies for the Generator are

distributions over distributions of puzzles in ∆(∆()), and mixed strategies for the

solver are distributions over solvers in ∆(). Fortunately, we prove this optimal

Generator strategy is a “pure strategy”, a single distribution D∗ ∈ ∆(D) over

puzzles rather than a distribution over distributions. For any set and λ ∈ (0, 1],

as long as each solver S fails on at least |HS| ≥ 3 puzzles, there is a unique dis-

tribution D∗ that achieves the value of the zero-sum puzzle-generation game. We

defer the proof to the Appendix.

TroubleMaker for Puzzle Generation. Having discussed the Generator and

Solver, we are now ready to introduce our algorithm to find D∗, the optimal

distribution chosen by the Generator. One may find it by maximizing J(D) =
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minS∈ v(D,S) (which is concave in D) using gradient-projection ascent as de-

scribed in Appendix. Since the set of puzzles is very large in our case, our pro-

posed Troublemaker algorithm (algorithm 3) follows the alternating gradient as-

cent procedure except that a sampling approximation similar to REINFORCE al-

gorithm williams1992simple is used. This update step (algorithm 3, section 3.3.2)

is an unbiased estimate of the gradient of J ; a proof of the same is provided in the

Appendix. If a learning Solver is being used, we compute an approximation to the

best solver by training the solver on puzzles independently solved from Dθi , the

distribution chosen by the Generator (algorithm 3, section 3.3.2).

3.3.3 Generating Hard Programming Puzzles

Having presented a general treatment of our Troublemaker algorithm, we are now

ready to discuss an instantiation of this framework for programming puzzles. We

first present a suitable representation for PPs followed by a discussion of different

Generators and Solvers used in this work.

3.3.4 Representation of Programming Puzzles.

We assume access to a language of programs defined as a Context Free Grammar

(CFG). Each abstract syntax tree (AST) ∗ ∈ describes a PP p∗ :→ {>,⊥}, as

defined in Section 3.3.2. When ∗ is clear from context, we write p instead of p∗.

For the rest of this paper, we define hard puzzles as PPs whose solution cannot be

found by the solver within a given time budget i.e.time(S, pT ) ≤ B. However,

note that our framework is agnostic to this definition and can be trivially modified
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to generate puzzles for other notions of hardness. To be able to generate PPs

that involve multiple levels of reasoning, the language needs to be expressive

enough to represent a wide range of puzzles. For example, Figure 3.8 shows an

excerpt from our grammar for generating PPs with floating-point solutions capable

of representing a wide-range of equations involving a single variable. Due to its

expressivity, sampling programs from uniformly at random is not useful. It often

leads to the generation of overly simple PPs or even unsolvable ones like x2 = −1.

Generating Solvable Programs. While training the generator will result in

hard problems, it can still generate unsolvable ones. Unsolvable PPs are not par-

ticularly useful as failure of the solver doesn’t imply that the puzzle was “hard” for

the solver. In order to generate solvable puzzles, we use domain-specific knowl-

edge to convert a puzzle sampled from to a solvable one. To continue with the

float-puzzle example (from fig. 3.8), we first sample an equation a(x) = b(x)

where terms a, b ∈term.5 This can now be converted to a solvable puzzle by eval-

uating the PP at a randomly chosen floating-point x0; resulting in the solvable PP:

a(x) = b(x)− k where k = a(x0)− b(x0). Observe that the obtained solvable PP

is also representable in the same language Lterm. Further, random solutions x ∈

are sampled until k can be evaluated (for e.g., setting x = 0 will cause an error

when x appears in the denominator).

Generating Complex Puzzles. A standard strategy employed by experts for

posing mathematical problems is chaining silver1994mathematical. Chaining ex-

5These terms can be obtained either by sampling uniformly at random or according to the
generator’s chosen distribution on .
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pands on an existing problem (and solution) such that finding the solution for

the modified problem requires solving the original problem as an intermediate

step. For instance, in the case of our float-puzzle problems, exponentiating

both sides of the equation is a good example of chaining – while preserving the

solvability, it requires solving the original problem as an intermediate step (after

taking log of both sides). In our setting of generating PPs, we incorporate this

problem posing strategy via tree-rewriting rules : → that transform an existing

AST to another AST in the language. Continuing our example of floating-point

PPs, fig. 3.9 defines a set of tree-rewrite rules that we use to produce solvable

puzzles that require multiple reasoning steps.

The approach used to generate solvable and more complex programs are suffi-

ciently general to be applicable to other domains – e.g. PPs with integer solutions

int-puzzles or PPs with sets of integers (int-set) as solutions. For instance,

consider the sub-set sum problem – find set B ⊆ A such that the sum of elements

in B is a given integer K. If this set-puzzle is solvable, chaining can be used to

produce more complex puzzles by replacing A with A ∪ C for some non-empty

integer set C. This transformation preserves solvability and can also make the

puzzle harder, e.g. if the entire set B = A is initially a solution.

3.3.5 Generation Model

We now discuss two classes of models for the generator – probabilistic grammar

based and neural-guided.

Probabilistic Grammar based Generator. The first generation strategy we
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bool equation := term == term
float term :=

0.10 term + term | 0.2 term * term
| 0.05 term - term | 0.05 term / term
| . . .

// evaluates to 1.0 if equality holds, 0.0 otherwise
| 0.15 float(term == 0)
| 0.05 π | 0.05 e | 0.05 0.0 // constants
| 0.30 x // variable

Figure 3.8: An excerpt from our Probabilistic Context Free Grammar (PCFG)
that defines a language of puzzles with floating-point solutions. Each production
is annotated with a weight, automatically learned by the generator (see text).

lhs == rhs → p**lhs == p**rhs
lhs == rhs → lhs**p == rhs**p
lhs == rhs → p+lhs == p+rhs
lhs == rhs → p*lhs == p*rhs

Figure 3.9: Tree rewrite rules for float puzzles. Here p, lhs, rhs ∈ Lterm,
the language defining a term as shown in Figure 3.8.

consider is to employ a probabilistic grammar as shown in fig. 3.8. Depending

on the solver, the weights of different rules can be notched up to bias genera-

tor towards specific types of PPs. For instance, the weights in fig. 3.8 display a

higher preference for multiplication of terms – this lends itself conveniently to

the generation of puzzles with higher-degree polynomials. Note that the proba-

bility of generating a program p factorizes into its constituent production rules

i.e.Pr(p∗) =
∏

r∈∗ Pr(r). This constructively corresponds to a standard sam-

pling procedure that builds the AST ∗ one production at a time – sampling a

production to expand each nonterminal using its corresponding weight as an un-

normalized probability. In a similar manner, a weight is associated with each tree-

rewriting rule (introduced in fig. 3.9) that value different rewrite-rules depending

on the solver. As discussed in section 3.3.2, the parameters of the generator i.e.the
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weights of the pCFG can be learned using our proposed Troublemaker algorithm

for any given solver.

Neural Guided Generator [8]. A drawback of the pCFG-based Generator is

that it only models coarse preferences for rules given a solver i.e.it encourages cer-

tain rules always as opposed to context-dependent changes. For instance, rule A

may be preferred over rule B conditioned on the current partial AST (and can be

the opposite for another AST). To enable finer-grained control over the generation

process, we propose a more versatile generation strategy that conditions predic-

tion of a rule on the partial AST produced so far. Similar to kalyan2018neural,

the context-dependent conditioning model is parameterized as a trainable neural

network, whose parameters guide the generation process.

Let ∗<t be a partial AST generated so far at generation timestep t assum-

ing some fixed ordering of nonterminal expansions to generate the whole AST.6

The neural-guided generation proceeds by treating the generation at each step

as a classification problem over all valid rules that can be expanded from the

current non-terminal. Therefore, the probability of the puzzle can be written as

Pr(p∗) =
∏

t Pr(rt | ∗<t) where rt is the production rule expanded in the AST ∗

at the tth timestep.

The network guiding the generation process takes as input the partially gen-

erated AST ∗<t to produce a distribution over all the valid rules that can be ex-

panded from the given non-terminal. Specifically, ∗<t is embedded into a vec-

tor through a function φ : T →d parameterized by a neural network. In this

6We use the pre-order traversal.
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work, we consider two different architectures for the tree-embedding model φ.

The first parameterization is a naı̈ve baseline – encoding a traversal of the tree ∗<t

with an LSTM hochreiter1997long. While straightforward, it does not explicitly

makes use of the syntactic structure of the AST. Motivated by recent research in

program representation allamanis2017learning,brockschmidt2018generative, our

second tree-embedding network is a graph neural network (GNN) – specifically,

the GNN-FiLM model proposed by [7]. GNN-fiLM builds on top of existing

GNNs by introducing feature-wise linear modulation [perez2018film] to better

capture the graph strucutre; achieving state-of-the-art performance on a wide va-

riety of graph tasks like link prediction and node classification.

Solvers In this section, we discuss the various solvers used in this work; both

static and adaptive variants.

Static Solvers. As discussed in section 3.3.2, static solvers “play” the same

strategy in every round of Troublemaker. Training the generator against static

solvers helps in identifying particular weaknesses of these systems – illuminating

potential areas for improvement. Importantly, recall that improving or finding

state-of-the-art puzzle solvers is beyond the scope of this work. We now discuss

the static solvers considered in this work:

• Grid Search (GrS): This solver, as the name suggests, searches in the solu-

tion space, narrowing down to a satisfying solution based on comparisons.

Unlike other solvers, a solution is accepted if equality holds within a pre-

specified tolerance. In our experiments, we set this tolerance to 10−16. Fur-

ther, note that this solver is not a general purpose puzzle solver and is used
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only for floating point and integer puzzles.

• Sympy (https://www.sympy.org): is a Python library for symbolic

mathematics and similar to GrS, it is used to only solve floating point and

integer problems. Specifically, we use the solve function to evaluate the

generator. Similar to GrS, a tolerance is used to accept the solution returned

by Sympy.

• Enumerative Solver (ES): Given a grammar to represent the space of so-

lutions , this solver performs an enumerative search to find a satisfying

solution. For the sake of simplicity, we provide the solver with the same

grammar used to generate a puzzle, albeit without the ability to produce

variables. However, in addition to utilizing the constants already present in

the grammar, it can also use constants extracted from the PP.

Trainable Solver. When the solver is trainable i.e.adapts to the improving

hardness of the PPs produced by the generator, Troublemaker (algorithm 3) results

in adversarial optimization framework. In this work, we consider a neural-guided

Solver mirroring the similarly modeled Generator. Given a grammar along with

a bank of useful constants, it constructs a solution x as a constant expression

in the grammar. The construction procedure is similar to puzzle generation –

conditioning on both an encoding of the PP i.e.ψ(∗) and the current partial AST

to select the next production rule to expand. Similar to the generator, the puzzle

embedding model ψ(·) is a GNN-FiLM network.
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# grid solver:
(2 ** abs(math.sin(math.cos(math.log(abs(math.sin(math.sin

(x)))))))) - (2 ** (1 + -0.484)) == 0
(math.sin(math.sin(x)) ** math.pi) - ((x + 2.083e-09) **

math.pi) == 0

# enumerative solver:
(-x ** 2) - ((x + 0.016) ** 2) == 0
(7 ** abs(math.cos(math.sin(math.sin(x))))) - (7 ** (x +

3.816)) == 0

# sympy solver:
(6 ** ((x ** abs(x)) ** x)) - (6 ** (9. + -8.004)) == 0
((((8 ** 4) + 2) + -8) ** 7) - ((((8 ** 4) + 2) + -8) **

((float(math.log(math.sin(math.log(x))) == x)) + 7)) ==
0

# learnable solver:
(5 + (math.log(x) / 2)) - (5 + ((1 / abs(-x)) + -117.573))

== 0 #iteration=10
((2 * x) ** math.pi) - (((math.cos(x * x)) + -39.638) **

math.pi) == 0 #iteration=90

Figure 3.10: Qualitative examples of puzzles that achieve a high reward (sampled
from top-100 of 1000 generations) for each static solver. In each of these cases,
a neural-guided generator has been used to produce the puzzles. Each solver, has
its specific weakness as can be seen from the examples – for example, excessive
use of non-linear functions such as log, sin, and cos, make a problem hard for the
grid solver. Similarly, simple exponentiation (here, via rewrite rules that simply
exponentiate both sides) foils the enumerative solver. Further, the generator games
the sympy solver by frequently using exponentiation and absolute value. Note
that the sympy solver fails to solve some of the generator problems due to the
time constraint, a fact exploited by the generator. As the learning solver is built on
top of the enumerative solver, the generator in our setting overpowers the solver
by producing puzzles with frequent exponentiations. (In this figure, decimals are
truncated to three places for presentation.)
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3.4 Experiments: Generating Hard Programming Puzzles

sec: experiments In this section, we discuss the result of pitting different genera-

tors and solvers against each other in the Troublemaker framework (algorithm 3).

We discuss these in the context of PPs with floating point solutions and provide

similar details in the Appendix for PPs with integer and set of integers as solu-

tions. We use λ = 1 throughout the experiments. (Preliminary experiments with

λ = 0 exhibited mode collapse where a single hard puzzle was generated with

probability 1.)

Training Details. As mentioned before, the generators are trained by maxi-

mizing for the reward in section 3.3.2. Recall the definition of the reward function

(Eq. 3.3.2) – ideally, a generator that maximizes this reward should have uniform

support over “hard” puzzles (i.e. solver fails to solve within 0.1s) and at most be

of size 20. Similarly, the size (# rules) of the puzzles is limited to a maximum of

20 and cannot exceed a depth of 10.

Unless otherwise mentioned, all the solvers are capped to run within a time

limit of 0.1 seconds. The trainable solver guides the generation process exactly

like the generator and is also trained via REINFORCE to maximize the number

of solved puzzles. Additionally, the trainable solver is warm started by using the

traces of the enumerative solver.

Both solvers and puzzle generators, when trainable, are optimized using Adam

kingma2014adam with a learning rate of 10−2. All the LSTM networks use a

hidden size of 64, and all GNN-FiLM networks use 3 propagation steps and a
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Figure 3.11: For the static solvers (Grid Solver, Enumerative and Sympy respec-
tively), note that the reward achieved by both the probabilistic the neural-guided
approach increases over time. Owing to its better expressivity and ability to model
context, the guided approach latches on to the weaknesses of the solver faster than
the probabilistic approach.

Figure 3.12: (Left) This figure shows the number of problems solved by the train-
able solver at each iteration – for every “iteration” of TM, both the generator and
solver are updated. (Right) This figure shows the number of puzzles unsolved per
1000 generations. Critically, note that both plots are “offset” by an iteration i.e.the
generator produces hard problems for the previously updated solver.

node representation size of 64.

Results. We present sample hard PPs for each of the solvers considered in

fig. 3.10. It can be noted that both the enumerative and the neural-guided solver

have similar weaknesses (e.g. repeated exponentiation) as appropriate inverse op-

erations like square roots are not present in the grammar. On the other hand, non-

linear functions like sin, cos and log leads to hard PPs for the Grid solver. For the

Sympy solver, the generator exploits two interesting failure modes – (a) Generat-
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ing PPs with exponentiation that are solvable but not within the given time-limit

and (b) using functions like abs that are not handled by the current Sympy solver

– directly identifying avenues for improvement in the solver.

Against all the three static solvers considered, the neural-guided Solver per-

forms better than the pCFG based Solver as evidenced by its higher reward valued

(fig. 3.11) and number of hard PPs generated.

In the case of trainable solvers, both the pCFG based and the guided solvers

are trained for N = 100 iterations and in each iteration ≈ 2000 puzzles are sam-

pled from the generator to update the solver. From Figure 3.12, we see that the

generator is always in a position to find more “hard” problems for the trainable

solver – likely because of building the guided solvers on top of the enumerative

solvers. Further, the solvers learned as part of Troublemaker are tuned to the dis-

tribution of problems from the corresponding generator – they solve only about

100 randomly sampled puzzles from the grammar (when evaluated at any itera-

tion).

3.5 Conclusion

We studied the problem of real-time program synthesis with a small number of

input-output examples. For this problem, we proposed a neural-guided system

that builds upon PROSE, a state-of-the-art symbolic logic based system. Our sys-

tem avoids top-down enumerative grammar exploration required by PROSE thus

providing impressive synthesis performance while still retaining key advantages

of a deductive system. That is, compared to existing neural synthesis techniques,
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our system enjoys following advantages: a) correctness: programs generated by

our system are guaranteed to satisfy the given input-output specification, b) gener-

alization: our system learns the user-intended program with just one input-output

example in around 60% test cases while existing neural systems learn such a pro-

gram in only 16% test cases, c) synthesis time: our system can solve most of the

test cases in less than 0.1 sec and provide impressive performance gains over both

neural as well symbolic systems.

The key take-home message of this work is that a deep integration of a sym-

bolic deductive inference based system with statistical techniques leads to best

of both the worlds where we can avoid extensive engineering effort required by

symbolic systems without compromising the quality of generated programs, and

at the same time provide significant performance (when measured as synthesis

time) gains. For future work, exploring better learning models for production

rule selection and applying our technique to diverse and more powerful grammars

should be important research directions.

Further, we show that an NGDS-style approach can be adapted such that the

guidance network is learnt in an end-to-end fashion, based on the performance at

the ned via REINFORCE. We specifically instantiate this as part of the Trouble-

Maker algorithm used to generate Programming Puzzles, again, cast as a program

synthesis task.
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CHAPTER 4

ACCELERATING SEARCH WITH MEMORY

Consider encountering a new mathematical problem, say, as part of as an assign-

ment. The natural question a student asks – Have I seen a similar problem before?

This allows us to revisit the solution of that problem and adapt it to solve our cur-

rent problem. In fact, this is a well-known strategy to solve math problems and

celebrated mathematician George Polya in his book How to Solve It discusses

analogy as an important step that a student must use to devise a plan for the prob-

lem at hand. Another equally powerful and commonly used strategy is to find

auxiliary problems and solve them – for instance, adding or multiplying with con-

stants strategically to complete squares and getting rid of common factors on both

sides of an equation are popular strategies to solve simple algebraic equations.

In this chapter, we use formalizations of these intuitions from human problem

solving literature to develop AI agents that follow a similar pipeline – i.e.actively

maintain a memory of previously seen problems to lazily solve novel problems.

Recall from the introductory chapter, the seven stages of human-problem solv-

ing:

1. Problem Categorization

2. Construction of a Mental Representation of the Problem
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3. Search for the appropriate problem-solving operators

4. Retrieval and Application of those operators

5. Evaluation of the progress

6. Repeat 1-4 till progress is satisfactory

7. Storage of the solution

Importantly, the last and final step of storage is skipped in existing deep learn-

ing approaches – either feedforward or recurrent networks. While non-parametric

methods (and their differentiable relaxations) exist, exploring a hybrid that uses

both approaches are not well studied.

Therefore, inspired from theories of human problem solving, the objective of this

chapter is to design algorithms that achieve speed-ups by reusing solutions or par-

tial solutions encountered previously. We believe this closes the loop by tying

together problem solving and learning – i.e. while a problem is being solved, it is

being categorized in a manner conducive for efficient retrieval. In other words, a

suitable representation is being learnt for the given problem and solution pair and

simultaneously, the problem is being solved.

The rest of the chapter discusses related works – specifically, motivations from

human problem solving theories, works in machine reasoning and planning. Next,

we will detail the proposed approach that involves actively storing previously en-
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countered problems. Next, we demonstrate the usefulness of our method by using

it for a toy planning problem and to solve mathematical equations with floating

point solutions.

4.1 Related Work

Analogical Reasoning. Analogical reasoning is a strategy that transfers solutions

from previously solved problems in the same or other domains. Traditional AI

and problem solving literature considers heuristic search and analogical reasoning

as orthogonal approaches. However, [100] provides a computational model for

analogical reasoning reconciling the means-ends analysis model and analogical

reasoning. This work discusses the issue of “similarity” in the problem space and

the conditions for transfer of a plan from one setting to the other. As an important

consequence, this approach underlines the intertwined nature of problem solving

and learning – in essence closing the loop. Specifically, learning can happen in

the following two instances:

• Organization of the past experiences. [101].

• Transformation or adaption of previous solutions to current problems i.e.

the analogical reasoning process itself [102].

Lazy Search for Motion Planning. [103] propose the construction of Experi-

ence Graphs or E-graphs to perform online motion planning. The E-graph is

constructed using the solutions found by the planner for previous problems. An

intelligently crafted heuristic function is proposed such that the search procedure
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reuses segments of the experience graph as much as possible while defaulting to a

default search procedure (like A*) when the nodes in the experience graph are not

relevant. In a similar vein, [104], utilizes a database of motion plans and steers an

RRT search towards similar paths. More recent work [105] utilizes experiences

from local scenarios to stitch or transfer the information to larger problems at the

global level. Finally, [106], propose an integrated framework for lazy search that

interleaves both search and edge evaluation – drawing parallels to analogical rea-

soning, this method integrates both search and learning. Additionally, the stored

graph is also subject to vertex rewiring – i.e. a reorganization of prior information

such that ensuing searches are more efficient – in terms of both time and search

effort.

4.2 Approach

It is a common feature of textbooks to provide example problems along with their

solutions before providing exercise problems. The objective of the example prob-

lems is to introduce the student to some standard techniques that lead to correct

solutions. On the other hand, exercise problems test the student’s understanding

of the concepts as well as ability to apply the solution techniques – for instance,

advanced problems can require the application a combination of these techniques.

In this spirit, we ask if a machine can learn to solve mathematical problems in

a similar manner i.e.given a set of example problems with their solutions, is it

possible for a machine to use them to devise a solution for unseen problems? Our
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proposed method naturally consists of three crucial components – a memory, rea-

son about similar problems and finally, adapt their solutions to solve a new prob-

lem. We now detail each of these building blocks in the subsequent sub-sections

before presenting our full-algorithm.

4.2.1 Problem Bank

This is a long-term memory that contains problems and their solutions. Here,

note the differentiation between answers and solutions – specifically, a solution

is the set of steps that help arrive at the answer for a problem. Throughout the

process, this can either be static or dynamic. If the problem bank is static, a

set of problems and solutions considered important are written to the memory

and the agent has a “read-only” access from there on – much like the example

problems discussed in a textbook. On the other hand, a dynamic memory allows

the algorithm to modify the contents of the memory – similar to a student making

a list of important problems while preparing for an examination as a function

of their own strengths and weaknesses. Such an approach while requiring more

complicated controls can be effective in a learning setting. Include references to

work that humans store important experiences that taught them something – see,

prioritized experience replay paper.

The bank of problems or the memoryM is a set whose elements are tuples of

problems and their solutions i.e.{P i,S i}Mi=1 where the size of the memory |M| =

M . The problem P ∈ L where L is some formal language that is powerful

enough to represent the problems under consideration. For example, it can be a
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python program that accepts the solution and returns Truewhen it is correct. In

this work, the mathematical problems considered belong to the Domain Specific

Language (DSL) presented in fig. 3.8 in Section 3.3.3. Further, we will overload

P i to represent both the problem and its Abstract Syntax Tree (AST). On the other

hand, the solution represents a sequence of steps and the resulting intermediate

problems. With slight abuse of notation we use S ij to denote the jth intermediate

problem corresponding to the solution of P i; as a consequence, note S i0 = P i.

4.2.2 Problem Representation and Similarity

A distance function φ(vi, vj) measures the dissimilarity of two problems vi and

vj . If a given problem x is really similar to a known problem v it is likely that

the solution x might be similar to the solution to v as well. An extreme case is

of course, when x ∈ V i.e.the problem is the same as a previously seen problem

stored in the memory.

One can use existing distances like tree edit distance to measure (dis)-similarity

between two problems, represented by their AST; however, this only captures the

strucutral information and fails to capture the solution techniques used to solve the

problems. By this, we are interested in capturing the assumption that two prob-

lems need to be similar both based on inherent structure and based on the solution

technique employed to arrive at the answer.

Learned Distance Measure. To capture this notion, we choose to learn a simi-
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larity function. At its core, is a deep network that learns a representation for each

problem and uses the triplet loss to learn a good metric space. Given a problem

vi, vj ∈ V , the deep network fφ is used to compute the representation, fφ(vi, vj).

For the triplet loss, negatives are obtained by choosing a problem (from a bank

of generated problems) that is farthest based on some pre-defined distance like

tree-edit distance.

4.2.3 Canonical Points and Planner

However, if x is only ‘somewhat’ similar to a known problem v, we attempt to

leverage the solution of v without naively copying the entire solution. For this

purpose, we require a broader notion of being able to adapt from the existing so-

lution to solve the novel problem. We address this by introducing what we call,

canonical points – essentially, intelligent guesses of intermediate forms of the so-

lution. This guesses are then fed to a planner that traces a plan from the given

problem to this canonical form.

Canonical Points. As discussed previously, solving auxillary problems is a stan-

dard strategy employed by humans to arrive at the solution of a novel problem. In

this work, we call such auxillary or intermediate problems as “canonical points”

and find them using the memory. Specifically, we use the similarity network to

retrieve the top-k similar problems from the memory and merge the solutions of

these problems into one giant graph. All nodes with more than 1 incidence point

are considered as canonical points; this captures the idea of humans guessing a
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likely intermediate solution as part of a problem. The central hypothesis is that

this canonical point is easier to reach than the final solution itself – therefore al-

lowing for a faster solution-finding algorithm.

Planner. All the canonical points found using the above procedure are then each

addressed in a prioritized manner – based on their similarity to the original prob-

lem as given by the learnt similarity network. The planner is a simple feed-forward

neural network that takes as input the current problem at hand vi, the canonical

point c to output the next action to take. The planner is greedily and iteratively

applied i.e.the action suggested for vi is applied to obtain vi+1 until the iterate

vj = c for some j < τ , where τ is some pre-decided upper bound on the iteration.

We describe the overview of the approach concretely in Algorithm 4.

4.3 Experiments

Experimental Setup. Inspired from prior work in the motion planning commu-

nity, we perform a very simple toy experiment similar to both [104] and [103].

Specifically, we consider a path-planning problem between a randomly sampled

source and a fixed target in an integer grid of size N × N where N = 100. Fur-

ther our grid contains obstacles with a maximum size of 5 grid locations. In this

toy setup, we define similarity as Manhattan distance between any two points –

importantly, notice that this can be inaccurate in the presence of obstacles.
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Algorithm 4 Procedure to solve a given novel problem x by leveraging past
knowledge.
Inputs:
Set of possible actions or math operations O
Memory graph G = (V,E) containing the set of past problems and intermediate
problems V and solution steps E
learned distance function φ(vi, vj) between problems, planner network fp : V ×
V → O
planner iteration threshold τ
Exhaustive or default solver solver
For given problem v, retrieve the top-k similar problems from the memory graph
V using the similarity network fφ
Find canonical point with highest similarity c by collating solutions of similar
problems
i← 0
while v 6= c & i≤ τ do

v ← fp(v, c)
i← i+ 1

end
if v 6= c & i≥ τ then

Fall back to default search or solution procedure solver to find the solution
end

We are given a new query i.e. a new source node in an online manner. At each

step, an experience graphGε is constructed that stores the node sk (given at step k)

and the associated path from s to the fixed target t. Before defaulting to a standard

search procedure (in our case RRT [107]) – the closest point in the graph vN , is

queried. If the distance to this stored point is closer than the target node, RRT is

invoked to plan a path from the source node to this “neighbor” node in the experi-

ence graph. Once a path is found, the path from vN to the target node t is trivially

appended to obtain a path from sk to t. In this toy setup, we are more interested in

obtaining a solution as opposed to the best (here, shortest path) solution. There-
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Figure 4.1: Timing analysis for the toy experimental setup of accelerating search
using memory. We find that the proposed memory based approach relying on RRT
as the default planning algorithm is an order of magnitude faster than running the
default search procedure from scratch. Further, we can observe a slight increase
in the time taken as the number of nodes in the experience graph increases –
signaling the trade-off between querying the nearest neighbor and planning from
scratch.

fore, we are more interested in performing a timing analysis of this procedure. As

can be seen from fig. 4.1, the simple approach of trivially appending paths from

the constructed experience graph results in ∼ 100× speed-up.

Going further, we intend to improve the toy experiments by learning a suitable

representation for each of the nodes such that the obstacle structure is captured (as

opposed to using Manhattan distance).

Application to Machine Reasoning Next, we apply the proposed memory-augmented

search procedure to solve problems requiring mathematical reaspning. Specif-
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ically, we will work in the domain of flaoting-point programming puzzles pro-

posed by [15]. These puzzles are a good handle to measure reasoning ability

of AI as they have the following interesting properties – 1) They do not require

additional knowledge except the problem itself. For instance, knowledge of nat-

ural language, common sense or spatio-temporal reasoning is not required and 2)

They are easily checkable i.e. given a solution the problem definition is sufficient

to quickly check the validity of the solution. While [15] propose a simple guided

solver in the lines of [8] to solve these puzzles, the proposed extension seeks to

improve upon this solver by augmenting it with a memory.

We particularly downsize the full-grammar and control to generate problems with

up to 2 re-writes of the generated float-puzzles. While these form the novel or

testing puzzles, the memory consists of float-puzzles with no rewrites applied.

Thefore, the simplest puzzle in this setis a linear equation. The observation space

O is essentially the various re-write rules that are allowed – e.g. adding or sub-

tracting constants, multiplying or dividing by constants, exponentiation, etc. The

similarity network is trained by asking problems with the same re-write rules to

be similar and the ones with different re-write rules applied to be further apart.

The planning netowrk fp is trained in a similar manner to the toy set-up and pre-

dicts one of the rewrite rules to reach the canonical point. Based, on how the

experiements are setup, it is highly likely for a canonical point to be one of the

base cases of the grammar i.e.a linear equation.
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In practice, we use a Graph Neural Network to encode the puzzles similar to

[15] and further, use a 2-layer MLP to learn both the similarity and the planning

networks on top of this representation. We use Adam to train both the networks

and specifically, do not train in an end-to-end fashion. Therefore, we find that the

accuracies of the similarity and the planning networks (in both retrieving correct

neigbors and predicting the correct action) are crucail for the overall success of the

approach. In this setting, we see that our memory-augmented approach achieves

nearly 23× speed-up over the baseline enumerative solver and about 5× speed-up

over a NGDS-style [8] neural guided solver – with all 3 methods achieving nearly

achieving near 100% accuracy, given sufficient time for completion.

4.4 Conclusion

In this work, we improve upon existing search techniques for structured predic-

tion, especially planning or reasoning problems, by augmenting the procedure

with an active memory. We motivate the usage of such a memory from theories of

human-problem solving [9] and instantiate the same using a learned similarity and

planning networks. Further, we introduce canonical points, easier auxillary prob-

lems, that are obtained from the stored memory of problems. Intuitively, these

canonical points correspond to intelligent guesses of a target intermediate prob-

lem based on prior experience – a common approach used to solve math prob-

lems. Finally, we demonstrate the usefulness of our method on two domains – a

toy planning problem set in a grid-world and floating-point puzzles introduced by

[15].
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